Let $A \subseteq \mathbb{R}^{p}$ and f be a function defined over A. To define $\int_{A} f$, the integral of f over A, it is reasonable to require that
(a) the content (volume) of A is measurable, e.g. if $A=\prod_{j=1}^{p}\left[a_{j}, b_{j}\right]$ is a closed cell in \mathbb{R}^{p}, one can define its content to be $c(A)=\prod_{j=1}^{p}\left(b_{j}-a_{j}\right)$.
(b) the function f is summable, i.e. integrable, over A.

In the first part of this handout, we shall discuss how to define the integral of a function on cells in \mathbb{R}^{p}. In the second part of the handout, we shall extend the definition to a function on more general (measurable) sets in \mathbb{R}^{p}.

Part 1: Integrable Functions on Cells:

Definitions:

(a) K is called a cell in \mathbb{R}^{p} (or a p-cell, or a p-dimensional rectangle) if $K=I_{1} \times \cdots \times I_{p}$, where $\bar{I}_{j}=\left[a_{j}, b_{j}\right] \subset \mathbb{R}$ for $j=1, \ldots, p$.
(b) The $(p-)$ content $c(K)$ of K is defined to be $c(K)=\left(b_{1}-a_{1}\right) \times \cdots \times\left(b_{p}-a_{p}\right)=\prod_{j=1}^{p}\left(b_{j}-a_{j}\right)$.
(c) A set $Z \subset \mathbb{R}^{p}$ has p-content zero if $\forall \epsilon>0, \exists$ a finite set $\mathscr{C}=\left\{K_{j}\right\}_{j=1}^{m}$ of p-cells such that (a) $Z \subset \bigcup_{j=1}^{m} K_{j}$,
(b) $\sum_{j=1}^{m} c\left(K_{j}\right)<\epsilon$.

Remark 1. Note that the definition implies that if K is a cell (not necessarily closed) in \mathbb{R}^{p}, then the boundary ∂K of K is a set of $p-$ content zero.
Remark 2. Note that the definition of the content for a cell is well defined since it is easy to see that the following properties are satisfied.
(a) Let K be a cell in \mathbb{R}^{p}) and K is a finite disjoint union of cells in \mathbb{R}^{p}), i.e. $K=\bigcup_{i=1}^{l} K_{i}$, then $c(K)=\sum_{i=1}^{l} c\left(K_{i}\right)$.
(b) Let K_{1}, K_{2} be cells in $\left.\mathbb{R}^{p}\right)$. Then $c\left(K_{1} \cup K_{2}\right)=c\left(K_{1} \backslash K_{2}\right)+c\left(K_{1} \cap K_{2}\right)+c\left(K_{2} \backslash K_{1}\right)$.
(c) Let $x \in \mathbb{R}^{p}, K$ be a cell in \mathbb{R}^{p}) and $x+K=\{x+z \mid z \in K\}$. Then $x+K$ is a cell in \mathbb{R}^{p}) with $c(x+K)=c(K)$, i.e. the definition of content for cells is invariant under translations.
Remark 3. By taking $\epsilon / 2>0$, if it is necessary, one may also assume that $Z \subset \operatorname{Int}\left(\bigcup_{j=1}^{m} K_{j}\right)$.
Example (1). Let $Z=\left\{x_{j} \in \mathbb{R} \mid \lim _{j \rightarrow \infty} x_{j}=x\right\}$, a (0 -dim'l) subset of \mathbb{R}. Then ($\left.1-\operatorname{dim}^{\prime} \mathrm{l}\right) c(Z)=0$ since $\forall \epsilon>0, \exists$ a 1-d cell K_{x} such that $x \in \operatorname{Int}\left(K_{x}\right), c\left(K_{x}\right)<\epsilon / 2$, and $x_{j} \in K_{x} \forall j \geq L$. For each $j=1, \ldots, L-1$, let K_{j} be a 1-d cell such that $x_{j} \in K_{j}$, and $c\left(K_{j}\right) \leq \epsilon /(2 L)$.
Example (2). Let $Z=\mathbb{Q} \cap[0,1]$, a (0 -dim'l) subset of \mathbb{R}. Then (1-dim'l) $c(Z) \neq 0$ since any finite
collection $\mathscr{C}=\left\{K_{1}, \ldots, K_{m}\right\}$ of 1-dimensional cells that satisfies (a) will have $\sum_{j=1}^{m} c\left(K_{j}\right) \geq 1$.
Example (3). Let $Z=\left\{(x, y)| | x|+|y|=1\}\right.$, a (1-dim'l) subset of \mathbb{R}^{2}. Then the (2-d) content $c(Z)=0$.
Definition (4). A collection of sets $\mathscr{C}=\left\{K_{j}\right\}_{j=1}^{m}$ in \mathbb{R}^{n} is called a partition of a set K in \mathbb{R}^{n} if
(a) $\bigcup_{i=1}^{m} K_{i}=K$, and
(b) $\operatorname{Int} K_{i} \cap \operatorname{Int} K_{j}=\emptyset$ holds for each $1 \leq i \neq j \leq m$.

Example. Let $K=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]=I_{1} \times \cdots \times I_{n}$, and $P_{j}=\left\{\left[x_{i}^{j}, x_{i+1}^{j}\right] \mid a_{j}=x_{0}^{j}<\cdots<\right.$ $\left.x_{m(j)}^{j}=b_{j}\right\}$, for $j=1, \ldots, n$, be a partition of I_{j} into $m(j)$ (a finite number of) closed cells in \mathbb{R}. Then the set $P=\left\{\prod_{j=1}^{n}\left[x_{i_{j}}^{j}, x_{i_{j}+1}^{j}\right] \mid 0 \leq i_{j} \leq m(j)-1\right\}$ (induced by P_{j} 's) partitions K into $m(1) \times \cdots \times m(n)$ (finite number of) parallel closed n-cells.
Example. Let $K=[0,1] \times[2,4] \subset \mathbb{R}^{2}$, and for each $n=1,2, \ldots$, let $P_{n}=\left\{\left.\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\left[2+\frac{2(i-1)}{n}, 2+\frac{2 i}{n}\right] \right\rvert\,\right.$ $1 \leq i \leq n\}$ be a partition of K that divides each side of K into n equal length subintervals. One can define the norm of a partition P_{n} to be the $\left\|P_{n}\right\|=\max _{K_{j} \in P_{n}} \operatorname{diam}\left(K_{j}\right)$. In this example, the norm of the partition is $\left\|P_{n}\right\|=\frac{\sqrt{5}}{n}$.
Definition(5). Let $P=\left\{I_{i}\right\}_{i=1}^{l}$ and $Q=\left\{K_{j}\right\}_{j=1}^{m}$ be partitions of (an n-cell) K. We say that P is a refinement of Q, denoted $Q \subset P$, if each cell in P is contained in some cell in Q, i.e. for each $I_{i} \in P \exists K_{j} \in Q$ such that $I_{i} \subset K_{j}$.
Note that if P, Q are partitions of K, then $P \cap Q$ is a (common) refinement of P and Q, and, in general, $P \cup Q$ is Not a partition,
Example. Let $K=[0,1] \times[2,4] \subset \mathbb{R}^{2}$, and for each $n=1,2, \ldots$, let $P_{n}=\left\{\left.\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\left[2+\frac{2(i-1)}{n}, 2+\frac{2 i}{n}\right] \right\rvert\,\right.$ $1 \leq i \leq n\}$. Then $I=[0,1 / 2] \times[2,3] \in P_{2} \subset P_{2} \cup P_{3}, J=[0,1 / 3] \times[2,8 / 3] \in P_{3} \subset P_{2} \cup P_{3}$, but $(0,1 / 2) \times(2,3) \cap(0,1 / 3) \times(2,8 / 3) \neq \emptyset$. Therefore, $P_{2} \cup P_{3}$ is not a partition of K.
Definition (6). Let f be a bounded function defined on a closed n-cell K with values in \mathbb{R}. A Riemann sum $S_{P}(f, K)$ corresponding to a partition $P=\left\{K_{j}\right\}_{j=1}^{m}$ of K is given by $S_{P}(f, K)=\sum_{i=1}^{m} f\left(x_{i}\right) c\left(K_{i}\right)$, where x_{i} is any point in K_{i}, and $c\left(K_{i}\right)$ denotes the (n-dim'l) content of K_{i}.
Remark. Note that $\sum_{i=1}^{m} m_{i} c\left(K_{i}\right)=L_{P}(f) \leq S_{P}(f)=S_{P}(f, K) \leq U_{P}(f)=\sum_{i=1}^{m} M_{i} c\left(K_{i}\right)$, where $m_{i}=\inf _{K_{i}} f \leq f\left(x_{i}\right) \leq M_{i}=\sup _{K_{i}} f$, and $L_{P}(f)$, and $U_{P}(f)$ are called the lower sum and upper sum, respectively, of f with respect to the partition P of K.
Remark. (Monotonicity of lower and upper sums) If P, Q are partitions of K, and $P \subset Q$ i.e. Q is finer than P, then we have

$$
L_{P}(f) \leq L_{Q}(f) \leq S_{Q}(f) \leq U_{Q}(f) \leq U_{P}(f)
$$

Since the set $\left\{L_{P}(f) \mid P\right.$ is a partition of $\left.K\right\}$ is nonempty, and bounded from above by $\left(\sup _{K} f\right) c(K)$, the $L(f, K)=\sup _{P} L_{P}(f)=\sup \left\{L_{P}(f) \mid P\right.$ is a partition of $\left.K\right\}$ exists.
Analogously, the $U(f, K)=\inf _{P} U_{P}(f)=\inf \left\{U_{P}(f) \mid P\right.$ is a partition of $\left.K\right\}$ exists.
If $\left\{P_{k}\right\}$ be any sequence of partitions of K such that $P_{j} \subset P_{j+1}$ for each $j=1,2 \ldots$, and $\left\|P_{j}\right\| \geq$ $\left\|P_{j+1}\right\| \rightarrow 0$, then $\lim _{\left\|P_{j}\right\| \rightarrow 0} L_{P_{j}}(f)=L(f, K)$, and $\lim _{\left\|P_{j}\right\| \rightarrow 0} U_{P_{j}}(f)=U(f, K)$.
Definition (of integrability on cells). A bounded function f is called Riemann integrable on K if $L(f, K)=U(f, K)$ and this common value, denoted $\int_{K} f$, is called the (Riemann) integral of f on K.

Remark. f is integrable on K if and only if there exists a unique number L such that for each partition P of K we have $L_{P}(f) \leq L \leq U_{P}(f)$
Proof: (\Rightarrow) Since $L_{P}(f) \leq L(f, K)=U(f, K) \leq U_{P}(f)$ holds for each partition P of K, by setting $L=L(f, K)$, the inequality $L_{P}(f) \leq L \leq U_{P}(f)$ holds for each partition P of K. Suppose that L_{1} is a number such that the inequality $L_{P}(f) \leq L_{1} \leq U_{P}(f)$ holds for each partition P of K. Then L_{1} is an upper (resp. a lower) bound of the set $\left\{L_{P}(f) \mid P\right.$ is a partition of $\left.K\right\}$ (resp. $\left\{U_{P}(f) \mid P\right.$ is a partition of $\left.K\right\}$) which implies that $L=L(f, K) \leq L_{1}\left(\right.$ resp. $\left.L_{1} \leq U(f, K)=L\right)$). Hence, $L_{1}=L$ is the unique number such that the inequality $L_{P}(f) \leq L \leq U_{P}(f)$ holds for each partition P of K.
(\Leftarrow) In order to show that $L(f, K)=U(f, K)$, we show that $L(f, K)=L$, and $U(f, K)=L$. Since the inequality $L_{P}(f) \leq L \leq U_{P}(f)$ holds for each partition P of K, we have $L(f, K)=\sup _{P} L_{P}(f) \leq$ $L \leq \inf _{P} U_{P}(f)=U(f, K)$. Suppose that $L(f, K)<L$ (resp. $L<U(f, K)$), then $\exists \epsilon_{0}>0$ such that $L(f, K)<L-\epsilon_{0}$ (resp. $L+\epsilon_{0}<U(f, K)$). Thus, for each partition P of K, we have $L_{P}(f) \leq L(f, K)<L-\epsilon_{0}<L \leq U_{P}(f)\left(\right.$ resp. $\left.L_{P}(f) \leq L<L+\epsilon_{0}<U(f, K) \leq U_{P}(f)\right)$ which contradicts to the uniqueness of L. This implies that $L(f, K)=L$ (resp. $U(f, K)=L$), and $L(f, K)=L=U(f, K)$, i.e. f is integrable on K.
Criterion of integrability: Let f be a bounded function defined on K. Then the following are equivalent.
(1) f is integrable on K, i.e. $L(f, K)=U(f, K)$, with integral $L=\int_{K} f=L(f, K)$
(2) (Riemann Criterion for Integrability) $\forall \epsilon>0, \exists$ partition P_{ϵ}, of K, such that if P is a refinement of P_{ϵ}, then $\left|U_{P}(f)-L_{P}(f)\right|<\epsilon$.
(3) (Cauchy Criterion for Integrability) $\forall \epsilon>0, \exists$ partition P_{ϵ}, of K, such that if P and Q are any refinements of P_{ϵ}, and $S_{P}(f, K)$ and $S_{Q}(f, K)$ are any corresponding Riemann sums, then $\mid S_{P}(f, K)$ $S_{Q}(f, K) \mid<\epsilon$.
(4) $\forall \epsilon>0, \exists$ partition P_{ϵ}, of K, such that if P is any refinement of P_{ϵ}, and $S_{P}(f, K)$ is any corresponding Riemann sum, then $\left|S_{P}(f, K)-L\right|<\epsilon$.
Proof Since $L_{P}(f) \leq L(f, K) \leq U(f, K) \leq U_{P}(f)$, (by drawing a picture) one notes that
$|U(f, K)-L(f, K)| \leq^{(*)}\left|U_{P}(f)-L_{P}(f)\right| \leq^{(\dagger)}\left|U_{P}(f)-L\right|+\left|L_{P}(f)-L\right|$.
$(1) \Rightarrow(2): \quad$ Given $\epsilon>0$, since $L(f, K)=U(f, K)$ (and by the definitions that $L(f, K)$ being the smallest number that satisfies $L(f, K) \geq L_{P}(f)$, and $U(f, K)$ being the largest number that satisfies $U(f, K) \leq U_{P}(f)$ for all $\left.P\right)$, there exists a partition P_{ϵ} such that

$$
L(f, K)-\epsilon / 2<L_{P_{\epsilon}}(f) \leq L(f, K),
$$

and

$$
L(f, K)=U(f, K) \leq U_{P_{\epsilon}}(f)<U(f, K)+\epsilon / 2=L(f, K)+\epsilon / 2
$$

Thus, if P is any refinement of P_{ϵ}, then

$$
L(f, K)-\epsilon / 2<L_{P_{\epsilon}}(f) \leq L_{P}(f) \leq U_{P}(f) \leq U_{P_{\epsilon}}(f)<L(f, K)+\epsilon / 2
$$

Setting $L=L(f, K)$ in the (second) inequality (\dagger), we get that

$$
\left|U_{P}(f)-L_{P}(f)\right| \leq\left|U_{P}(f)-L\right|+\left|L_{P}(f)-L\right|<\epsilon / 2+\epsilon / 2=\epsilon .
$$

Thus, the conclusion of (2) holds.
$(2) \Rightarrow(1):$ For each $\epsilon>0$, since the (first) inequality $(*)$, and (2) hold, there exists a partition P_{ϵ} such that if P is any refinement of P_{ϵ}, then

$$
|U(f, K)-L(f, K)| \leq\left|U_{P}(f)-L_{P}(f)\right|<\epsilon .
$$

Letting $\epsilon \rightarrow 0$, we get

$$
0 \leq \lim _{\epsilon \rightarrow 0}|U(f, K)-L(f, K)| \leq \lim _{\epsilon \rightarrow 0} \epsilon=0 \Rightarrow U(f, K)=L(f, K)
$$

and f is integrable.
$(2) \Leftrightarrow(3):$ For any refinements P, Q of P_{ϵ}, we have

$$
\begin{aligned}
& L_{P_{\epsilon}}(f) \leq L_{P}(f) \leq S_{P}(f, K) \leq U_{P}(f) \leq U_{P_{\epsilon}}(f) \\
& L_{P_{\epsilon}}(f) \leq L_{Q}(f) \leq S_{Q}(f, K) \leq U_{Q}(f) \leq U_{P_{\epsilon}}(f)
\end{aligned}
$$

Thus, we have

$$
\left|S_{P}(f, K)-S_{Q}(f, K)\right| \leq\left|U_{P_{\epsilon}}(f)-L_{P_{\epsilon}}(f)\right|
$$

and $(2) \Rightarrow(3)$.
Conversely, for any refinements P, Q of P_{ϵ}, if $\left|S_{P}(f, K)-S_{Q}(f, K)\right|<\epsilon / 2$ then, since

$$
\left|U_{P}(f)-L_{Q}(f)\right|=\sup \left|S_{P}(f, K)-S_{Q}(f, K)\right|
$$

where the supremum is taken on all possible Riemann sum $S_{P}(f, K)$ and $S_{Q}(f, K)$ corresponding to the given (fixed) partitions P and Q, respectively, we have

$$
\left|U_{P}(f)-L_{Q}(f)\right| \leq \sup \left|S_{P}(f, K)-S_{Q}(f, K)\right| \leq \epsilon / 2
$$

and $(3) \Rightarrow(2)$.
$(3) \Leftrightarrow(4):$ Let $\left\{Q_{j}\right\}$ be a sequence of refinements of P_{ϵ} such that $Q_{j} \subset Q_{j+1}$ and $\lim _{j \rightarrow \infty}\left\|Q_{j}\right\|=0$.
then

$$
\left|S_{P}(f, K)-L\right|=\lim _{j \rightarrow \infty}\left|S_{P}(f, K)-S_{Q_{j}}(f, K)\right| \leq \epsilon
$$

and $(3) \Rightarrow(4)$. Conversely, since

$$
\left|S_{P}(f, K)-S_{Q}(f, K)\right| \leq\left|S_{P}(f, K)-L\right|+\left|S_{Q}(f, K)-L\right|
$$

holds, we have $(4) \Rightarrow(3)$.
Example (1). For $a<b$, let $f(x)= \begin{cases}a & \text { if } x \in \mathbb{Q} \cap[0,1], \\ b & \text { if } x \in[0,1] \backslash \mathbb{Q} .\end{cases}$
Then f is not continuous at each $x \in[a, b]$ and f is not integrable on $[0,1]$ since $L_{P}(f,[0,1])=a \neq$ $b=U_{P}(f,[a, b])$ for any partition P of $[a, b]$.
Example (2). Let $f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n} \in \mathbb{Q} \cap[0,1] \text {, where } m, n \in \mathbb{N}=\{1,2, \ldots\} \text { and } \operatorname{gcd}(m, n)=1, \\ 1 & \text { if } x=0, \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q} .\end{cases}$
Then f is integrable on $[0,1]$ and f is continuous at every irrational and discontinuous at every rational.
Observations. (1) There are finitely many rational numbers $\frac{p}{q} \in[0,1]$ such that $q<n$. In fact, for fixed $q<n$, the number of $\frac{p}{q} \in[0,1]$ is at most $q+1$, which is at most n. Moreover, there are less than n positive q such that $q<n$. Thus, the set $A_{n}=\left\{\frac{p}{q} \in[0,1]: q<n\right\}$ contains no more than n^{2} element and note that if $\frac{m}{n} \in(0,1)$ is in lowest terms (m and n have no common factors except one), then $\min \left\{\left|\frac{p}{q}-\frac{m}{n}\right|: \frac{p}{q} \in A_{n}\right\}>\frac{1}{n^{2}}$.
(2) Fix $2 \leq n \in \mathbb{N}$, and let $\hat{P}=\left\{\frac{p}{q} \pm \frac{1}{n^{3}}: q<n, q \in \mathbb{N}, p=0,1, \ldots, q-1\right\}$. Since the set \hat{P} is finite, it yields a partition $P=(\hat{P} \cap[0,1]) \cup\{1\}$ of $[0,1]$. Define a step function $s_{n}(x)= \begin{cases}1 & \text { if } \exists q \in \mathbb{N}, p \in\{0,1, \ldots, q-1\} \text { with } q<n \text { such that } \frac{p}{q}-\frac{1}{n^{3}}<x<\frac{p}{q}+\frac{1}{n^{3}}, \\ 0 & \text { if there do not exist such } p \text { and } q .\end{cases}$
Also, define $f_{n}(x)= \begin{cases}f(x) & \text { if } \exists q \in \mathbb{N}, p \in\{0,1, \ldots, q-1\} \text { with } q<n \text { such that } \frac{p}{q}-\frac{1}{n^{3}}<x<\frac{p}{q}+\frac{1}{n^{3}}, \\ 0 & \text { if there do not exist such } p \text { and } q .\end{cases}$

For each $n \geq 2$, since A_{n} contains no more than n^{2} elements, there exist no more than n^{2} intervals $\left(\frac{p}{q}-\frac{1}{n^{3}}, \frac{p}{q}+\frac{1}{n^{3}}\right)$ in the interval $[0,1]$. Thus, we have $0 \leq U\left(f_{n},[0,1]\right) \leq U_{P}\left(f_{n},[0,1]\right) \leq U_{P}\left(s_{n},[0,1]\right)=$ $\int_{0}^{1} s_{n}(x) \leq n^{2}\left(\frac{2}{n^{3}}\right)=\frac{2}{n}$ for all $n \geq 2$. By letting n go to infinity, we get $0=U(f,[0,1]) \geq L(f,[0,1])=$ 0 . This proves that f is integrable on $[0,1]$.
(3) Let $x=\frac{m}{n}$ be a rational number in lowest terms. Note that if $y \in[0,1]$ satisfying that $|y-x|<\frac{1}{4 n^{2}}=\frac{1}{(2 n)^{2}}$ then either $y \in[0,1] \backslash \mathbb{Q}$ or $y=\frac{p}{q}$ with $q<2 n$ (since any $\frac{p}{q} \in A_{2 n}$ will have $\left.\left|x-\frac{p}{q}\right| \geq \frac{1}{(2 n)^{2}}\right)$. Assume f is continuous at x. Given $\epsilon=\frac{1}{2 n}$, there exists $\delta>0$ such that if $y \in[0,1]$ and $|y-x|<\delta$ then $|f(x)-f(y)|<\epsilon$. Let $d=\min \left\{\delta, \frac{1}{(2 n)^{2}}\right\}$ and note that if $y \in[0,1]$ and $|y-x|<d$ then $|f(x)-f(y)|>\frac{1}{2 n}$ (regardless that y is rational or irrational). This contradicts our assumption.
(4) Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Given $\epsilon>0$, choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$. Since there are finitely many rational numbers $\frac{p}{q} \in[0,1]$ such that $q<n$, the minimum distance δ between $\frac{p}{q}$ and α for $q<n$, i.e. $\delta=\min \left\{\left|\alpha-\frac{p}{q}\right|: q<n\right\}$, exists and it is positive since α is irrational. If $|x-\alpha|<\delta$, then either $x \in[0,1] \backslash \mathbb{Q}$, or $x=\frac{p}{q}$ with p and q having no common factors except one and $q \geq n$, since $|x-\alpha|<\delta$. Thus, we have $|f(x)-f(\alpha)|= \begin{cases}0<\epsilon & \text { if } x \in(\alpha-\delta, \alpha+\delta) \backslash \mathbb{Q}, \\ \left|f\left(\frac{p}{q}\right)\right|=\frac{1}{q} \leq \frac{1}{n}<\epsilon & \text { if } x=\frac{p}{q} \in(\alpha-\delta, \alpha+\delta) .\end{cases}$
Some basic properties of integrable functions on cells:

Some basic properties of integrable functions on cells:

(1) Suppose that K, K_{1}, K_{2} are closed n-cells such that $K=K_{1} \cup K_{2}$, and $\operatorname{Int}\left(K_{1}\right) \cap \operatorname{Int}\left(K_{2}\right)=\emptyset$. If f is integrable on K, then f is integrable on K_{1}, and K_{2}, and $\int_{K} f=\int_{K_{1}} f+\int_{K_{2}} f$.
Proof. Given $\epsilon>0$, since f is integrable, there is a partition P_{ϵ} of K such that if P is any refinement of P_{ϵ}, then $\left|U_{P}(f, K)-L_{P}(f, K)\right|<\epsilon$. For $i=1,2$, let $P_{\epsilon, i}=P_{\epsilon} \cap K_{i}$, then $P_{\epsilon, i}$ is a partition of K_{i}, and $P_{\epsilon, 1} \cup P_{\epsilon, 2}$ is a refinement of P_{ϵ}. Thus, we have

$$
\begin{aligned}
\epsilon & >U_{P_{\epsilon, 1} \cup P_{\epsilon, 2}}\left(f, K_{1} \cup K_{2}\right)-L_{P_{\epsilon, 1} \cup P_{\epsilon, 2}}\left(f, K_{1} \cup K_{2}\right) \\
& =U_{P_{\epsilon, 1}}\left(f, K_{1}\right)-L_{P_{\epsilon, 1}}\left(f, K_{1}\right)+U_{P_{\epsilon, 2}}\left(f, K_{2}\right)-L_{P_{\epsilon, 2}}\left(f, K_{2}\right) \\
& \geq U_{P_{\epsilon, i}}\left(f, K_{i}\right)-L_{P_{\epsilon, i}}\left(f, K_{i}\right) \\
& \geq 0
\end{aligned}
$$

Thus, for each $i=1,2$,

$$
\epsilon>U_{P_{\epsilon, i}}\left(f, K_{i}\right)-L_{P_{\epsilon, i}}\left(f, K_{i}\right) \geq 0
$$

and if P_{i} is any refinement of $P_{\epsilon, i}$, then

$$
\epsilon>U_{P_{\epsilon, i}}\left(f, K_{i}\right)-L_{P_{\epsilon, i}}\left(f, K_{i}\right) \geq U_{P_{i}}\left(f, K_{i}\right)-L_{P_{i}}\left(f, K_{i}\right) \geq 0
$$

This implies that f is Riemann integrable on K_{i} and $L_{i}=\int_{K_{i}} f$ exists, for $i=1,2$, and

$$
\begin{aligned}
L=L(f, K) & =\sup \left\{L_{P}(f) \mid P \text { is any refinement of } P_{\epsilon}\right\} \\
& \leq \sup \left\{L_{P_{1}}(f)+L_{P_{2}}(f) \mid P_{i} \text { is any refinement of } P_{\epsilon, i} i=1,2\right\} \\
& \leq L_{1}+L_{2} \\
& \leq \inf \left\{U_{P_{1}}(f)+U_{P_{2}}(f) \mid P_{i} \text { is any refinement of } P_{\epsilon, i} i=1,2\right\} \\
& =\inf \left\{U_{P}(f) \mid P \text { is any refinement of } P_{\epsilon, 1} \cup P_{\epsilon, 2}\right\} \\
& =U(f, K)=L
\end{aligned}
$$

Thus, we have $L=L_{1}+L_{2}$.
(2) If f and g are integrable on K, then, for any $c \in \mathbb{R}, c f+g$ is integrable on K, and $\int_{K}(c f+g)=$ $c \int_{K} f+\int_{K} g$.
Proof. Given $\epsilon>0$, since f, g are integrable on K, there exists a partition P_{ϵ} of K such that if P is any refinement of P_{ϵ} then

$$
\left|U_{P}(f)-L_{P}(f)\right|<\epsilon / 2(1+|c|)
$$

and

$$
\left|U_{P}(g)-L_{P}(g)\right|<\epsilon / 2
$$

Thus, we have

$$
\left|U_{P}(c f+g)-L_{P}(c f+g)\right| \leq|c|\left|U_{P}(f)-L_{P}(f)\right|+\left|U_{P}(g)-L_{P}(g)\right|<|c| \epsilon / 2(1+|c|)+\epsilon / 2<\epsilon
$$

which implies that $c f+g$ is integrable on K. Let $\left\{P_{j}\right\}$ be a sequence of partitions of K satisfying that $P_{j} \subset P_{j+1}$ for all $j=1,2, \ldots$, and $\lim _{j \rightarrow \infty}\left\|P_{j}\right\|=0$. Since

$$
\int_{K} f=\lim _{j \rightarrow \infty} S_{P_{j}}(f, K) \text { and } \int_{K} g=\lim _{j \rightarrow \infty} S_{P_{j}}(g, K)
$$

we have

$$
\begin{aligned}
c \int_{K} f+\int_{K} g & =c \lim _{j \rightarrow \infty} S_{P_{j}}(f, K)+\lim _{j \rightarrow \infty} S_{P_{j}}(g, K) \\
& =\lim _{j \rightarrow \infty} S_{P_{j}}(c f, K)+\lim _{j \rightarrow \infty} S_{P_{j}}(g, K) \\
& =\lim _{j \rightarrow \infty} S_{P_{j}}(c f+g, K) \\
& =\int_{K}(c f+g) .
\end{aligned}
$$

(3) Suppose that f and g are integrable on K. If $f(x) \leq g(x)$ for each $x \in K$, then $\int_{K} f \leq \int_{K} g$.

Proof. Since $-f+g \geq 0$ on K and, by (2), it is integrable on K, we have

$$
0 \leq L_{P}(-f+g) \leq \int_{K}(-f+g)=-\int_{K} f+\int_{K} g
$$

where P is any partition of K. Since $\int_{K} f \in \mathbb{R}$, by adding $\int_{K} f$ on both sides of the inequality, we get $\int_{K} f \leq \int_{K} g$.
(4) If f is integrable on K, then $|f|$ is integrable on K, and $\left|\int_{K} f\right| \leq \int_{K}|f|$.

Proof. Given $\epsilon>0$, since f is integrable on K, there exists a partition P_{ϵ} of K such that if $P=\left\{K_{j}\right\}_{j=1}^{m}$ is any refinement of P_{ϵ} then
$\left|U_{P}(|f|)-L_{P}(|f|)\right|=\left|\sum_{i=1}^{m}\left(\sup _{K_{i}}|f|-\inf _{K_{i}}|f|\right) c\left(K_{i}\right)\right| \leq\left|\sum_{i=1}^{m}\left(\sup _{K_{i}} f-\inf _{K_{i}} f\right) c\left(K_{i}\right)\right|=\left|U_{P}(f)-L_{P}(f)\right|<\epsilon$.
Thus, $|f|$ is integrable (by Riemann's Criterion for integrability).
Since $\pm f,|f|$ are integrable, and $\pm f \leq|f|$ on K, we have $\pm \int_{K} f \leq \int_{K}|f| \Rightarrow\left|\int_{K} f\right| \leq \int_{K}|f|$.
Examples of integrability.
(1) Let $Z \subset \mathbb{R}^{n}$ have (n -)content zero, and f be a bounded function defined on Z. Then f is integrable on Z, and $\int_{Z} f=0$.
Proof. For each $\epsilon>0$, since Z has content zero, there exists a collection of cells $\left\{K_{i}\right\}_{i=1}^{m}$ such that $Z \subset \cup_{i=1}^{m} K_{i}=K$, and $\sum_{i=1}^{m} c\left(K_{i}\right)<\epsilon / 2\left(\sup _{Z}|f|+1\right)$. Define

$$
\bar{f}(x)= \begin{cases}f(x) & \text { if } x \in Z \\ 0 & \text { if } x \in K \backslash Z\end{cases}
$$

Then,

$$
|\bar{f}|(x)= \begin{cases}|f|(x) \geq 0 & \text { if } x \in Z \\ 0 & \text { if } x \in K \backslash Z\end{cases}
$$

and note that

$$
\begin{aligned}
\left|\sup _{K_{j} \cap Z} f-\inf _{K_{j} \cap Z} f\right| & =\left|\sup _{K_{j} \cap Z} \bar{f}-\inf _{K_{j} \cap Z} \bar{f}\right| \\
& \leq\left|\sup _{K_{j}} \bar{f}-\inf _{K_{j}} \bar{f}\right| \\
& \leq\left|\sup _{K_{j}}\right| \bar{f}\left|-\inf _{K_{j}}(-|\bar{f}|)\right| \\
& =\left|\sup _{K_{j}}\right| \bar{f}\left|-\left(-\sup _{K_{j}}|\bar{f}|\right)\right| \\
& =2 \sup _{K_{j}}|\bar{f}|=2 \sup _{K_{j} \cap Z}|f| \\
& \leq 2 M .
\end{aligned}
$$

Thus, if P is any partition of $K=\cup_{i=1}^{m} K_{i}$, we have

$$
\left|U_{P}(f, Z)-L_{P}(f, Z)\right| \leq 2 \sup _{Z}|f| \sum_{i=1}^{m} c\left(K_{i}\right)<\epsilon
$$

which implies that f is integrable on Z with $\int_{Z} f=0$.
(2) Let I be a closed interval in \mathbb{R}, and f be a bounded and monotonic function defined on $I=[a, b]$ Then f is integrable on I.
Proof. Since f is bounded on $I, L(f, I)=\sup _{P} L_{P}(f)$ and $U(f, I)=\inf _{P} U_{P}(f)$ exist.
Let P_{n} be the partition that divides I into 2^{n} equal length subintervals. Thus,

$$
\lim _{n \rightarrow \infty} L_{P_{n}}(f)=L(f, I) \text { and } \lim _{n \rightarrow \infty} U_{P_{n}}(f)=U(f, I)
$$

Since

$$
\lim _{n \rightarrow \infty}\left|U_{P_{n}}(f)-L_{P_{n}}(f)\right|=\lim _{n \rightarrow \infty}(f(b)-f(a))(b-a) / 2^{n}=0,
$$

we get $L(f, I)=U(f, I)$, i.e. f is integrable on I.
(3) Let K be a closed n-cell, and f be a continuous function on K. Then f is integrable on K.

Proof. Since f is continuous on (compact set) K, f is uniformly continuous on K.
Hence, for any given $\epsilon>0$ there exists $\delta>0$ such that

$$
\text { if } x, y \in K \text { and }\|x-y\|<\delta \text { then }|f(x)-f(y)|<\epsilon /(c(K)+1) .
$$

Let P_{ϵ} be a partition of K such that $\left\|P_{\epsilon}\right\|=\max _{K_{j} \in P_{\epsilon}} \operatorname{diam}\left(K_{j}\right)=\max _{K_{j} \in P_{\epsilon}} \sup \left\{\|x-y\|: x, y \in K_{j}\right\}<\delta$.
If P is any refinement of P_{ϵ} then $\left|U_{P}(f)-L_{P}(f)\right|<\epsilon c(K) /(c(K)+1)<\epsilon$.
Therefore, f is integrable on K.
(4) Let K be a closed n-cell, and f be a bounded function defined on K. If there exists a (n-)content zero subset $Z \subset K$, such that f is continuous on $K \backslash Z$, i.e. f is continuous everywhere on K except at a content zero subset Z of K, then f is integrable on K.
Proof. For each $\epsilon>0$, since Z has content zero, there exists a collection of cells $\left\{I_{i}\right\}_{i=1}^{l}$ such that

$$
Z \subset \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right), \operatorname{Int} I_{i} \cap \operatorname{Int} I_{j}=\emptyset, \text { and } \sum_{i=1}^{l} c\left(I_{i}\right)<\epsilon / 4\left(\sup _{K}|f|+1\right)
$$

Since $K \backslash \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right)$ is compact, f is uniformly continuous there.
Thus, for the given $\epsilon>0$, there exists a $\delta>0$ such that if

$$
x, y \in K_{j} \backslash \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right) \text {, then }|f(x)-f(y)|<\epsilon / 2(c(K)+1)
$$

Let $P_{\epsilon}=\left\{K_{j}\right\}_{j=1}^{m}$ be a partition of K such that $\left\{I_{i} \cap K\right\}_{i=1}^{l} \subset P_{\epsilon}$ and $\left\|P_{\epsilon}\right\|=\max _{1 \leq j \leq m} \sup _{x, y \in K_{j}}\|x-y\|<\delta$. If P is any refinement of P_{ϵ} then, by using (1) and (3), we have

$$
\begin{aligned}
\left|U_{P}(f)-L_{P}(f)\right| & \leq \sum_{i=1}^{l}\left(\sup _{Z \cap I_{i}} f-\inf _{Z \cap I_{i}} f\right) c\left(I_{i}\right)+\left|U_{P}\left(f, K \backslash \operatorname{Int}\left(\cup_{i=1}^{l} I_{i}\right)\right)-L_{P}\left(f, K \backslash \operatorname{Int}\left(\cup_{i=1}^{l} I_{i}\right)\right)\right| \\
& \leq 2 \sup _{Z}|f| \sum_{i=1}^{l} c\left(I_{i}\right)+c(K) \epsilon / 2(c(K)+1) \\
& <\epsilon
\end{aligned}
$$

This implies that f is integrable on K.
Theorems: (1) Suppose f and g are integrable on a closed n-cell K, and $f=g$ everywhere on K except at a content zero subset Z of K, then $\int_{K} f=\int_{K} g$.
Proof. Since f, g are integrable on K and Z has content zero, $f-g$ is integrable on K and it is continuous with value 0 on $K \backslash Z$. Given $\epsilon>0$, let $\left\{I_{i}\right\}_{i=1}^{l}$ be a collection of cells such that

$$
Z \subset \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right) \text { and } \sum_{i=1}^{l} c\left(I_{i}\right)<\epsilon / 4\left(\sup _{K}|f-g|+1\right) .
$$

Let $P_{\epsilon}=\left\{K_{j}\right\}_{j=1}^{m}$ such that $\left\{I_{i} \cap K\right\}_{i=1}^{l} \subset P_{\epsilon}$. Thus, if P is any refinement of P_{ϵ} then

$$
\begin{aligned}
\left|U_{P}(f-g)-L_{P}(f-g)\right| & \leq\left|U_{P}\left(f-g, K \backslash \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right)\right)-L_{P}\left(f-g, K \backslash \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right)\right)\right| \\
& +\sum_{i=1}^{l}\left(\sup _{Z \cap I_{i}}(f-g)-\inf _{Z \cap I_{i}}(f-g)\right) c\left(I_{i}\right) \\
& <\epsilon .
\end{aligned}
$$

This implies that $\int_{K}(f-g)=0$. Since $\int_{K} g \in \mathbb{R}$, we have $\int_{K} f=\int_{K} g$.
(2) Fundamental Theorem of Calculus Let f be integrable on $[a, b]$. For each $x \in[a, b]$, let $F(x)=\int_{a, x]} f=\int_{a}^{x} f(t) d t$. Then F is continuous on $[a, b]$; moreover, $F^{\prime}(x)$ exists and equals $f(x)$ at every x at which f is continuous.
Remark. For each $x \in[a, b]$, the existence of $F(x)$ is due to $[a, x] \subseteq[a, b]$ and the existence of $\int_{a}^{b} f$. Existence of $\int_{a}^{b} f$ implies that for each $\epsilon>0 \exists$ a partition P_{ϵ} of $[a, b]$ such that if P is any refinement of P_{ϵ}, then $\left|U_{P}(f,[a, b])-L_{P}(f,[a, b])\right|<\epsilon$.
Let

$$
P_{\epsilon}^{l}=P_{\epsilon} \cap[a, x] \text { and } P_{\epsilon}^{r}=P_{\epsilon} \cap[x, b] .
$$

Then $P_{\epsilon}^{l} \cup P_{\epsilon}^{r}$ is a refinement of P_{ϵ} and if P^{l} is any refinement of P_{ϵ}^{l}, then

$$
\begin{aligned}
\left|U_{P_{\epsilon}^{l}}(f,[a, x])-L_{P_{\epsilon}^{l}}(f,[a, x])\right| & \leq\left|U_{P_{\epsilon}^{l}}(f,[a, x])-L_{P_{\epsilon}^{l}}(f,[a, x])+U_{P_{\epsilon}^{r}}(f,[x, b])-L_{P_{\epsilon}^{r}}(f,[x, b])\right| \\
& =\left|U_{P_{\epsilon}^{l} \cup P_{\epsilon}^{r}}(f,[a, b])-L_{P_{\epsilon}^{l} \cup P_{\epsilon}^{r}}(f,[a, b])\right| \\
& <\epsilon .
\end{aligned}
$$

Hence, f is integrable on $[a, x]$, i.e. $F(x)$ exists.
Proof of the Theorem. If $x, y \in[a, b] \Rightarrow F(y)-F(x)=\int_{x}^{y} f(t) d t$.
Let $c=\sup \{|f(t)|: t \in[a, b]\}$. (c exists since f is integrable on $[a, b] \Rightarrow f$ is bounded on $[a, b]$.)
Then $|F(y)-F(x)| \leq\left|\int_{x}^{y}\right| f(t)|d t| \leq c\left|\int_{x}^{y} d t\right|=c|y-x|$
$\Rightarrow F$ is (Lipschitz, hence) continuous on $[a, b]$.
Suppose that f is continuous at x; thus $\forall \epsilon>0, \exists \delta>0$ such that
if $t \in[a, b]$ and $|t-x|<\delta$ then $|f(t)-f(x)|<\epsilon$.

Since $f(x)=f(x) \frac{1}{y-x} \int_{x}^{y} d t=\frac{1}{y-x} \int_{x}^{y} f(x) d t$.
Hence, if $y \in[a, b]$ and $|y-x|<\delta \Rightarrow t \in[a, b]$ and $|t-x|<\delta$ for all t between y and x.
$\Rightarrow|f(t)-f(x)|<\epsilon$ and this implies that
$\Rightarrow\left|\frac{F(y)-F(x)}{y-x}-f(x)\right| \leq \frac{1}{|y-x|}\left|\int_{x}^{y}\right| f(t)-f(x)|d t| \leq \frac{1}{|y-x|}\left|\int_{x}^{y} \epsilon d t\right|=\epsilon$.
$\Rightarrow \lim _{y \rightarrow x} \frac{F(y)-F(x)}{y-x}=f(x)$, i.e. $F^{\prime}(x)$ exists and equals $f(x)$ at every x at which f is continuous.
(3) Let F be a continuous function on $[a, b]$ that is differentiable except at finitely many points in $[a, b]$, and let f be a function on $[a, b]$ that agrees with F^{\prime} at all points where F^{\prime} is defined. If f is integrable on $[a, b]$, then $\int_{a}^{b} f(t) d t=F(b)-F(a)$.
Proof. Let $\left\{z_{1}, \ldots, z_{m}\right\} \subset[a, b]$ be the set at which F^{\prime} does not exist, i.e. F is not differentiable at $z_{i}, i=1, \ldots, m$.
Let $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ be a partition of $[a, b]$ with $z_{i}, i=1, \ldots, m$, being partition point, i.e. each $z_{i} \in\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$.
$\Rightarrow F$ is continuous on each $\left[x_{j-1}, x_{j}\right], j=1, \ldots, n$, and differentiable on each $\left(x_{j-1}, x_{j}\right)$.
By the Mean Value Theorem, $F\left(x_{j}\right)-F\left(x_{j-1}\right)=F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)=f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$ for some $t_{j} \in\left(x_{j-1}, x_{j}\right)$ and for each $j=1, \ldots, n$.
Thus, we have $F(b)-F(a)=\sum_{j=1}^{n} F\left(x_{j}\right)-F\left(x_{j-1}\right)=\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$
$\Rightarrow L_{P}(f,[a, b]) \leq F(b)-F(a) \leq U_{P}(f,[a, b])$
$\Rightarrow \sup _{P} L_{P}(f,[a, b]) \leq F(b)-F(a) \leq \inf _{P} U_{P}(f,[a, b])$
If f is integrable then $\int_{a}^{b} f(t) d t=\sup _{P} L_{P}(f,[a, b])=\inf _{P} U_{P}(f,[a, b])=F(b)-F(a)$.

Part 2: Integrable Functions on General Measurable Sets:

In the following we shall extend the concept of content of a cell in \mathbb{R}^{n} to more general measurable subsets of \mathbb{R}^{n} and extend the definition of integrability of a function to general subsets of \mathbb{R}^{n}.
Definition (of integrability on general Euclidaen bounded subsets.) Let $A \subset \mathbb{R}^{n}$ be a bounded set and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Let K be a closed cell containing A and define $f_{K}: K \rightarrow \mathbb{R}$ by

$$
f_{K}(x)= \begin{cases}f(x) & \text { if } x \in A \\ 0 & \text { if } x \in K \backslash A\end{cases}
$$

We say that f is integrable on A if f_{K} is integrable on K, and define $\int_{A} f=\int_{K} f_{K}$.
Remark. If $A=K$ is a closed cell in \mathbb{R}^{n}, then, since $f_{K}=f$ on K, it is obvious the integrability of f on A agrees with the integrability of f_{K} on K and $\int_{A} f$ is defined to be $\int_{K} f_{K}$.
Remark. Let I be any closed cell containing A. Then $K \cap I$ is a closed cell containing $A \Rightarrow$ $f_{K}=f_{K \cap I}=f_{I}$ everywhere in $K \cap I, f_{K}=0$ on $K \backslash(K \cap I)$, and $f_{I}=0$ on $I \backslash(K \cap I)$. Hence, $\int_{K} f_{K}=\int_{K \cap I} f_{K \cap I}=\int_{I} f_{I} \Rightarrow$ the definition (of integrability of f) only depends on f and A (and it is independent of the choice of $K \supseteq A$).
Basic properties of integrable functions on general sets:
(1). Let f and g be integrable functions defined on a bounded set $A \subset \mathbb{R}^{n}$ and let $\alpha, \beta \in \mathbb{R}$. Then the function $\alpha f+\beta g$ is integrable on A and $\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g$.
Proof. For any partition P of a cell $K \supseteq A$, since $S_{P}\left(\alpha f_{K}+\beta g_{K}, K\right)=\alpha S_{P}\left(f_{K}, K\right)+\beta S_{P}\left(g_{K}, K\right)$ when the same intermediate points x_{j} are used, the function $\alpha f+\beta g$ is integrable on A. Thus, by choosing the intermediate points from A whenever it is possible, we obtain that $S_{P}(\alpha f+\beta g, A)=$ $\alpha S_{P}(f, A)+\beta S_{P}(g, A)$ which implies that $\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g$.
(2) Let A_{1} and A_{2} be bounded sets with no pints in common, and let f be a bounded function. If f is integrable on A_{1} and on A_{2}, then f is integrable on $A_{1} \cup A_{2}$ and $\int_{A_{1} \cup A_{2}} f=\int_{A_{1}} f+\int_{A_{2}} f$.

Proof. Let K be a closed cell containing both A_{1} and A_{2}, and let $f_{K}(x)= \begin{cases}f(x) & \text { if } x \in A_{1} \cup A_{2}, \\ 0 & \text { if } x \in K \backslash\left(A_{1} \cup A_{2}\right)\end{cases}$ and $f_{K}^{i}(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \in A_{i}, \\ 0 & \text { if } x \in K \backslash A_{i}\end{array}\right.$ for $i=1,2$. Since f is integrable on $A_{i}, i=1,2, f_{K}^{i}$ is integrable on K and, since $f_{K}=f_{K}^{1}+f_{K}^{2}$, and f is integrable on $A_{1} \cup A_{2}$. Also, for any partition P of K, note that $S_{P}\left(f_{K}, K\right)=S_{P}\left(f_{K}^{1}, K\right)+S_{P}\left(f_{K}^{2}, K\right)$ when the same intermediate points x_{j} are used. Thus, we have $\int_{A_{1} \cup A_{2}} f=\int_{A_{1}} f+\int_{A_{2}} f$.
(3) If $f: A \rightarrow \mathbb{R}$ is integrable on (bounded set) A and $f(x) \geq 0$ for $x \in A$, then $\int_{A} f \geq 0$.

Proof. For any closed cell $K \supseteq A$ and any partition P of K, note that $S_{P}\left(f_{K}, K\right) \geq 0$ for any Riemann sum. Thus, $\int_{A} f \geq 0$.
Remark. This implies that if f and g are integrable on A and $f(x) \leq g(x)$ for $x \in A$, then (a) $\int_{A} f \leq \int_{A} g$, and (b) $|f|$ is integable on A, and $\left|\int_{A} f\right| \leq \int_{A}|f|$.
(4) Let $f: A \rightarrow \mathbb{R}$ be a bounded function and suppose that A has content zero. Then f is integrable on A and $\int_{A} f=0$.
Proof. Let $K \supseteq A$ be a closed cell. If $\epsilon>0$ is given, let P_{ϵ} be a partition of K such that those cells in P_{ϵ} which contain points of A have total content less than ϵ. Now if P is a refinement of P_{ϵ}, then those cells in P containing points of A will also have total content less than ϵ. Hence if $|f(x)| \leq M$ for $x \in A$, we have $\left|S_{P}\left(f_{K}, K\right)-0\right| \leq M \epsilon$ for any Riemann sum corresponding to P. Since ϵ is arbitrary, this implies that $\int_{A} f=0$.
(5) Let $f, g: A \rightarrow \mathbb{R}$ be bounded functions and suppose that f is integrable on (bounded set) A. Let $Z \subseteq A$ have content zero and suppose that $f(x)=g(x)$ for all $x \in A \backslash Z$. Then g is integrable on A and $\int_{A} f=\int_{A} g$.
Proof. Extend f and g to functions f_{K}, g_{K} defined on a closed cell $K \supseteq A$. Thus, the function $h_{K}=f_{K}-g_{K}$ is bounded and equals 0 except on Z. Hence, h_{K} is integrable on K and $\int_{K} h_{K}=0$. Since f_{K} is also integrable on K, we have $\int_{A} f=\int_{K} f_{K}=\int_{K}\left(f_{K}-h_{K}\right)=\int_{K} g_{K}=\int_{A} g$.
(6) Let U be a connected, open subset of \mathbb{R}^{n} and let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ be a C^{1} map on U. If K is any convex, compact subset of U, then $f(K)$ has measure (or content) zero.
Definition. Let $A \subset \mathbb{R}^{n}$ be a bounded set. The characteristic function of A is the function χ_{A} defined by $\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { otherwise } .\end{cases}$

Now, suppose A is a bounded subset of \mathbb{R}^{n} and f is a bounded
function on \mathbb{R}^{n}. Let K be a closed cell that contains A. We say that f is integrable on A if $f \chi_{A}$ is integrable on K, and define $\int_{A} f=\int_{K} f \chi_{A}$. (Note that $f \chi_{A}=0$ on $K \backslash A$, so it is independent of the choice of $K \supseteq A$.)
Question: Let $f \equiv 1$ on $A \subset \mathbb{R}^{n}$. What does it mean when we say that f is integrable on A ?
Definition. A set $A \subset \mathbb{R}^{n}$ is said to have content (or it is said to be (Jordan) measurable) if it is bounded and its boundary ∂A has content zero. Let $\mathscr{D}\left(\mathbb{R}^{n}\right)\left(=\left\{A \subset \mathbb{R}^{n} \mid A\right.\right.$ has content $\}=$ $\left\{A \subset \mathbb{R}^{n} \mid A\right.$ is measurable $\}$) denote the set of all measurable subsets of \mathbb{R}^{n}.
Remark. If $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and if K is a closed cell containing A, then the function g_{K} defined by $g_{K}(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { if } x \in K \backslash A\end{array}\right.$ is continuous on K except possibly at points of ∂A (which has content zero). Thus, g_{K} is integrable on K and we define the content of A, denoted $c(A)$, by $c(A)=\int_{K} g_{K}=\int_{A} 1$.
Remark. $\forall \epsilon>0$, since $c(A)=\int_{K} g_{K}, \exists$ a partition $P_{\epsilon}=\left\{I_{j}\right\}_{j=1}^{m}$ of K such that $\left|S_{P_{\epsilon}}\left(g_{k}, K\right)-c(A)\right|<$ ϵ for any Riemann sum $S_{P_{\epsilon}}\left(g_{k}, K\right)$. By choosing the intermediate points in $S_{P_{\epsilon}}\left(g_{k}, K\right)$ to belong to A whenever possible, we have $\sum_{j=1}^{m} c\left(I_{j}\right)+\epsilon \geq S_{P_{\epsilon}}\left(g_{k}, K\right)+\epsilon>c(A)>S_{P_{\epsilon}}\left(g_{k}, K\right)-\epsilon$, where the first inequality holds since $A \subset \cup_{j=1}^{m} I_{j}$.
Thus, we have: A set $A \subset \mathbb{R}^{n}$ has content zero if and only if A has content and $\int_{A} 1=$ $c(A)=0$.

Proof. $(\Rightarrow) \forall \epsilon>0$, since A has content zero, \exists closed cells I_{1}, \ldots, I_{m} s.t. $\left\{\begin{array}{l}A \subset \cup_{j=1}^{m} I_{j}=K_{\epsilon} \\ \sum_{j=1}^{m} c\left(I_{j}\right)<\epsilon .\end{array}\right.$ Since (i) K_{ϵ} is bounded $\Rightarrow A$ is bounded, and (ii) K_{ϵ} is closed $\Rightarrow \partial A \subset K_{\epsilon}=\cup_{j=1}^{m} I_{j}$ with $\sum_{j=1}^{m} c\left(I_{j}\right)<\epsilon \Rightarrow c(\partial A)=0$
$\Rightarrow A$ has content and $c(A)=\int_{A} 1=\int_{K} g_{K}=0$ since $0 \leq c(A)<S_{P_{\epsilon}}\left(g_{K}, K\right)+\epsilon \leq \sum_{j=1}^{m} c\left(I_{j}\right)+\epsilon \leq 2 \epsilon$ and ϵ is arbitrary.
(\Leftarrow) Suppose that $A \subset \mathbb{R}^{n}$ has content and that $c(A)=0 \Rightarrow \exists$ a closed cell K containing A s.t. the function $g_{K}(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { if } x \in K \backslash A\end{array}\right.$ is integrable on $K . \forall \epsilon>0$, let $P_{\epsilon}=\left\{I_{j}\right\}_{j=1}^{m}$ be a partition of K s.t. any Riemann sum corresponding to P_{ϵ} satisfies that $0 \leq\left|S_{P_{\epsilon}}\left(g_{K}, K\right)-c(A)\right|<\epsilon$. Since $c(A)=0$, we have $0 \leq S_{P_{\epsilon}}\left(g_{K}, K\right)<\epsilon$. By taking the intermediate points in $S_{P_{\epsilon}}\left(g_{K}, K\right)$ to belong to A whenever possible, we have $A \subset \bigcup_{1 \leq j \leq m ; I_{j} \cap A \neq \emptyset} I_{j}$ and $\sum_{1 \leq j \leq m ; I_{j} \cap A \neq \emptyset} c\left(I_{j}\right)<\epsilon \Rightarrow c(A)=0$.
Theorem. Let $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and let $f: A \rightarrow \mathbb{R}$ be integrable on A and such that $|f(x)| \leq M$ for all $x \in A$. Then $\left|\int_{A} f\right| \leq M c(A)$. More generally, if f is real valued and $m \leq f(x) \leq M$ for all $x \in A$, then $(*) m c(A) \leq \int_{A} f \leq M c(A)$.
Proof. Let f_{K} be the extension of f to a closed cell K containing A. If $\epsilon>0$ is given, then there exists a partition $P_{\epsilon}=\left\{I_{j}\right\}_{j=1}^{h}$ of K such that if $S_{P_{\epsilon}}\left(f_{K}, K\right)$ is any corresponding Riemann sum, then $S_{P_{\epsilon}}\left(f_{K}, K\right)-\epsilon \leq \int_{K} f_{K} \leq S_{P_{\epsilon}}\left(f_{K}, K\right)+\epsilon$. We note that if the intermediate points of the Riemann sum are chosen outside of A whenever possible, we have $S_{P_{\epsilon}}\left(f_{K}, K\right)=\sum^{\prime} f\left(x_{j}\right) c\left(I_{j}\right)$, where the sum is extended over those cells in P_{ϵ} entirely contained in A. Hence, $S_{P_{\epsilon}}\left(f_{K}, K\right) \leq M \sum^{\prime} c\left(I_{j}\right) \leq M c(A)$. Therefore, we have $\int_{A} f=\int_{K} f_{K} \leq M c(A)+\epsilon$, and since $\epsilon>0$ is arbitrary we obtain the right side of inequality $(*)$. The left side is established in a similar manner.
Theorem. If $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $c(A)>0$, then there exists a closed cell $J \subseteq A$ such that $c(J) \neq 0$.
Mean Value Theorem. Let $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ be a connected set and let $f: A \rightarrow \mathbb{R}$ be bounded and continuous on A. Then there exists a point $p \in A$ such that $\int_{A} f=f(p) c(A)$.
Proof. If $c(A)=0$, the conclusion is trivial; hence we suppose that $c(A) \neq 0$. Let $m=\inf \{f(x): x \in$ $A\}$, and $M=\sup \{f(x): x \in A\}$; it follows from the preceding theorem that $m \leq \frac{1}{c(A)} \int_{A} f \leq M$. If both inequalities are strict, the results follows from Intermediate Value Theorem (since f is continuous on A). Now suppose that $\int_{A} f=M c(A)$. If the supremum M is attained at $p \in A$, the conclusion also follows. Hence we assume that the supremum M is not attained on A. Since $c(A) \neq 0$, there exists a closed cell $J \subseteq A$ such that $c(J) \neq 0$ (prove this). Since J is compact and f is continuous on J, there exists $\epsilon>0$ such that $f(x) \leq M-\epsilon$ for all $x \in J$. Since $A=J \cup(A \backslash J)$ we have $M c(A)=\int_{A} f=\int_{J} f+\int_{A \backslash J} f \leq(M-\epsilon) c(J)+M c(A \backslash J)<M c(A)$, a contradiction. If $\int_{A} f=m c(A)$, then a similar argument applies.
Mean Value Theorem for Riemann-Stieltjes Integrals. Let $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ be a connected set, let $f: A \rightarrow \mathbb{R}$ be bounded and continuous on A, and let $g: A \rightarrow \mathbb{R}$ be bounded, nonnegative and continuous on A, Then there exists a point $p \in A$ such that $\int_{A} f g=f(p) \int_{A} g$.
Remark (Well-definedness of (Jordan) measurability) . Note that the definition for a set having content (or the definition of a set being measurable) is well defined since the the following properties hold.
Proposition. Let $A, B \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and let $x \in \mathbb{R}^{n}$. Then
(1) $A \cap B, A \cup B \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $c(A)+C(B)=c(A \cap B)+c(A \cup B)$. Using induction, this concludes that if $A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and A is a finite disjoint union of measurable subsets, i.e. $A=\bigcup_{i=1}^{l} B_{i}$ and each $B_{i} \in \mathscr{D}\left(\mathbb{R}^{n}\right)$, then $c(A)=\sum_{i=1}^{l} c\left(B_{i}\right)$.
(2) $A \backslash B, B \backslash A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$, and $c(A \cup B)=c(A \backslash B)+c(A \cap B)+c(B \backslash A)$.
(3) If $x+A=\{x+a \mid a \in A\}$ then $x+A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $c(x+A)=c(A)$, i.e. the definition of content is invariant under translations.
Proof. By using the definition of boundary points of a set, we have $\partial(A \cap B), \partial(A \cup B), \partial(A \backslash$ $B), \partial(B \backslash A) \subset \partial A \cup \partial B$. Thus, $c(\partial(A \cap B))=c(\partial(A \cup B))=c(\partial(A \backslash B))=c(\partial(B \backslash A))=0$ and $A \cap B, A \cup B, A \backslash B, B \backslash A \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.
Now let $K \supseteq A \cup B$ be a closed cell and let $f_{A}, f_{B}, f_{A \cap B}, f_{A \cup B}$ be the functions equal to 1 on $A, B, A \cap B, A \cup B$, respectively, and equal 0 elsewhere on K. Then they are integrable on K and, since $f_{A}+f_{B}=f_{A \cap B}+f_{A \cup B}$, we have
$c(A)+c(B)=\int_{K} f_{A}+\int_{K} f_{B}=\int_{K}\left(f_{A}+f_{B}\right)=\int_{K}\left(f_{A \cap B}+f_{A \cup B}\right)=\int_{K} f_{A \cap B}+\int_{K} f_{A \cup B}$
$=c(A \cap B)+c(A \cup B)$.
To prove (3), note that if $\epsilon>0$ is given and if J_{1}, \ldots, J_{m} are cells with $\partial A \subset \bigcup_{i=1}^{m} J_{i}$ and $\sum_{i=1}^{m} c\left(J_{i}\right)<\epsilon$, then $x+J_{1}, \ldots, x+J_{m}$ are cells with $\partial(x+A) \subset \bigcup_{i=1}^{m}\left(x+J_{i}\right)$ and $\sum_{i=1}^{m} c\left(x+J_{i}\right)<\epsilon$. Since $\epsilon>0$ is arbitrary, the set $x+A$ belongs to $\mathscr{D}\left(\mathbb{R}^{n}\right)$.
Let I be a closed cell containing A; hence $x+I$ is a closed cell containing $x+A$. Let $f_{1}: I \rightarrow \mathbb{R}$ be such that $f_{1}(y)=1$ for $y \in A$ and $f_{1}(y)=0$ for $y \in I \backslash A$, and let $f_{2}: x+I \rightarrow \mathbb{R}$ be such that $f_{2}(y)=1$ for $y \in x+A$ and $f_{1}(y)=0$ for $y \in x+I \backslash(x+A)$. Thus, we have $f_{1}(y)=f_{2}(x+y)$ for each $y \in A$, and $c(A)=\int_{I} f_{1}=\int_{x+I} f_{2}=c(x+A)$.

