Advanced Calculus

Handout 5

Let $A \subseteq \mathbb{R}^p$ and f be a function defined over A. To define $\int_A f$, the integral of f over A, it is reasonable to require that

(a) the content (volume) of A is measurable, e.g. if $A = \prod_{j=1}^{p} [a_j, b_j]$ is a closed cell in \mathbb{R}^p , one can

define its content to be $c(A) = \prod_{j=1}^{p} (b_j - a_j).$

(b) the function f is summable, i.e. integrable, over A.

In the first part of this handout, we shall discuss how to define the integral of a function on cells in \mathbb{R}^p . In the second part of the handout, we shall extend the definition to a function on more general (measurable) sets in \mathbb{R}^p .

Part 1: Integrable Functions on Cells:

Definitions:

(a) K is called a **cell in** \mathbb{R}^p (or a *p*-cell, or a *p*-dimensional rectangle) if $K = I_1 \times \cdots \times I_p$, where $\overline{I}_j = [a_j, b_j] \subset \mathbb{R}$ for $j = 1, \ldots, p$.

(b) The (p-)content c(K) of K is defined to be $c(K) = (b_1 - a_1) \times \cdots \times (b_p - a_p) = \prod_{j=1}^p (b_j - a_j).$

(c) A set $Z \subset \mathbb{R}^p$ has p-content zero if $\forall \epsilon > 0, \exists$ a finite set $\mathscr{C} = \{K_j\}_{j=1}^m$ of p-cells such that

(a)
$$Z \subset \bigcup_{j=1}^{m} K_j$$
,
(b) $\sum_{i=1}^{m} c(K_j) < \epsilon$

Remark 1. Note that the definition implies that if K is a cell (not necessarily closed) in \mathbb{R}^p , then the boundary ∂K of K is a set of p-content zero.

Remark 2. Note that the definition of the content for a cell is well defined since it is easy to see that the following properties are satisfied.

(a) Let K be a cell in \mathbb{R}^p) and K is a finite disjoint union of cells in \mathbb{R}^p), i.e. $K = \bigcup_{i=1}^{n} K_i$, then

$$c(K) = \sum_{i=1}^{l} c(K_i).$$

- (b) Let K_1, K_2 be cells in \mathbb{R}^p). Then $c(K_1 \cup K_2) = c(K_1 \setminus K_2) + c(K_1 \cap K_2) + c(K_2 \setminus K_1)$.
- (c) Let $x \in \mathbb{R}^p$, K be a cell in \mathbb{R}^p) and $x + K = \{x + z \mid z \in K\}$. Then x + K is a cell in \mathbb{R}^p) with c(x + K) = c(K), i.e. the definition of content for cells is invariant under translations.

Remark 3. By taking $\epsilon/2 > 0$, if it is necessary, one may also assume that $Z \subset Int(\bigcup_{i=1}^{j} K_i)$.

Example (1). Let $Z = \{x_j \in \mathbb{R} \mid \lim_{j \to \infty} x_j = x\}$, a (0-dim'l) subset of \mathbb{R} . Then $(1 - \dim'l) c(Z) = 0$ since $\forall \epsilon > 0$, $\exists a 1$ -d cell K_x such that $x \in \operatorname{Int}(K_x)$, $c(K_x) < \epsilon/2$, and $x_j \in K_x \forall j \ge L$. For each $j = 1, \ldots, L - 1$, let K_j be a 1-d cell such that $x_j \in K_j$, and $c(K_j) \le \epsilon/(2L)$. **Example** (2). Let $Z = \mathbb{Q} \cap [0, 1]$, a (0-dim'l) subset of \mathbb{R} . Then (1-dim'l) $c(Z) \neq 0$ since any finite collection $\mathscr{C} = \{K_1, \ldots, K_m\}$ of 1-dimensional cells that satisfies (a) will have $\sum c(K_j) \ge 1$.

Example (3). Let $Z = \{(x, y) \mid |x| + |y| = 1\}$, a (1-dim'l) subset of \mathbb{R}^2 . Then the (2-d) content c(Z) = 0.

Definition (4). A collection of sets $\mathscr{C} = \{K_j\}_{j=1}^m$ in \mathbb{R}^n is called a partition of a set K in \mathbb{R}^n if

(a) $\bigcup_{i=1}^{i} K_i = K$, and

(b) $\operatorname{Int} K_i \cap \operatorname{Int} K_j = \emptyset$ holds for each $1 \leq i \neq j \leq m$.

Example. Let $K = [a_1, b_1] \times \cdots \times [a_n, b_n] = I_1 \times \cdots \times I_n$, and $P_j = \{ [x_i^j, x_{i+1}^j] \mid a_j = x_0^j < \cdots < x_n \}$ $x_{m(j)}^{j} = b_{j}$, for j = 1, ..., n, be a partition of I_{j} into m(j) (a finite number of) closed cells in \mathbb{R} . Then the set $P = \{\prod_{j=1}^{n} [x_{i_j}^j, x_{i_j+1}^j] \mid 0 \le i_j \le m(j) - 1\}$ (induced by P_j 's) partitions K into $m(1) \times \cdots \times m(n)$ (finite number of) parallel closed n-cells.

Example. Let $K = [0, 1] \times [2, 4] \subset \mathbb{R}^2$, and for each $n = 1, 2, \dots$, let $P_n = \{ [\frac{i-1}{n}, \frac{i}{n}] \times [2 + \frac{2(i-1)}{n}, 2 + \frac{2i}{n}] \mid$ $1 \leq i \leq n$ be a partition of K that divides each side of K into n equal length subintervals. One can define the norm of a partition P_n to be the $||P_n|| = \max_{K_j \in P_n} \operatorname{diam}(K_j)$. In this example, the norm

of the partition is $||P_n|| = \frac{\sqrt{5}}{n}$.

Definition(5). Let $P = \{I_i\}_{i=1}^n$ and $Q = \{K_j\}_{j=1}^m$ be partitions of (an n-cell) K. We say that P is a refinement of Q, denoted $Q \subset P$, if each cell in P is contained in some cell in Q, i.e. for each $I_i \in P \exists K_i \in Q$ such that $I_i \subset K_i$.

Note that if P, Q are partitions of K, then $P \cap Q$ is a (common) refinement of P and Q, and, in general, $P \cup Q$ is Not a partition,

Example. Let $K = [0, 1] \times [2, 4] \subset \mathbb{R}^2$, and for each $n = 1, 2, \dots$, let $P_n = \{ [\frac{i-1}{n}, \frac{i}{n}] \times [2 + \frac{2(i-1)}{n}, 2 + \frac{2i}{n}] \mid$ $1 \leq i \leq n$. Then $I = [0, 1/2] \times [2, 3] \in P_2 \subset P_2 \cup P_3, J = [0, 1/3] \times [2, 8/3] \in P_3 \subset P_2 \cup P_3$, but $(0, 1/2) \times (2, 3) \cap (0, 1/3) \times (2, 8/3) \neq \emptyset$. Therefore, $P_2 \cup P_3$ is not a partition of K.

Definition (6). Let f be a bounded function defined on a closed n-cell K with values in \mathbb{R} . A Riemann sum $S_P(f, K)$ corresponding to a partition $P = \{K_j\}_{j=1}^m$ of K is given by $S_P(f,K) = \sum_{i=1}^{m} f(x_i)c(K_i)$, where x_i is any point in K_i , and $c(K_i)$ denotes the (n-dim'l)

content of K_i .

Remark. Note that $\sum_{i=1}^{m} m_i c(K_i) = L_P(f) \leq S_P(f) = S_P(f, K) \leq U_P(f) = \sum_{i=1}^{m} M_i c(K_i)$, where $m_i = \inf_{K_i} f \leq f(x_i) \leq M_i = \sup_{K_i} f$, and $L_P(f)$, and $U_P(f)$ are called the **lower sum and upper**

sum, respectively, of f with respect to the partition P of K. **Remark.** (Monotonicity of lower and upper sums) If P, Q are partitions of K, and $P \subset Q$ i.e. Q is finer than P, then we have

$$L_P(f) \le L_Q(f) \le S_Q(f) \le U_Q(f) \le U_P(f).$$

Since the set $\{L_P(f) \mid P \text{ is a partition of } K\}$ is nonempty, and bounded from above by $(\sup_K f)c(K)$, the $L(f, K) = \sup_{P} L_{P}(f) = \sup \{L_{P}(f) \mid P \text{ is a partition of } K\}$ exists.

Analogously, the $U(f, K) = \inf_P U_P(f) = \inf \{U_P(f) \mid P \text{ is a partition of } K\}$ exists.

If $\{P_k\}$ be any sequence of partitions of K such that $P_j \subset P_{j+1}$ for each $j = 1, 2..., \text{ and } ||P_j|| \ge ||P_j|| \le |P_j||$ $||P_{j+1}|| \to 0$, then $\lim_{||P_j||\to 0} L_{P_j}(f) = L(f, K)$, and $\lim_{||P_j||\to 0} U_{P_j}(f) = U(f, K)$.

Definition (of integrability on cells). A bounded function f is called **Riemann integrable on** Kif L(f,K) = U(f,K) and this common value, denoted $\int_{K} f$, is called the (**Riemann**) integral of f on K.

Remark. f is integrable on K if and only if there exists a unique number L such that for each partition P of K we have $L_P(f) \le L \le U_P(f)$

Proof: (\Rightarrow) Since $L_P(f) \leq L(f, K) = U(f, K) \leq U_P(f)$ holds for each partition P of K, by setting L = L(f, K), the inequality $L_P(f) \leq L \leq U_P(f)$ holds for each partition P of K. Suppose that L_1 is a number such that the inequality $L_P(f) \leq L_1 \leq U_P(f)$ holds for each partition P of K. **Then** L_1 **is an upper** (resp. a lower) **bound of the set** $\{L_P(f) \mid P$ **is a partition of** $K\}$ (resp. $\{U_P(f) \mid P \text{ is a partition of } K\}$) which implies that $L = L(f, K) \leq L_1$ (resp. $L_1 \leq U(f, K) = L$)). Hence, $L_1 = L$ is the unique number such that the inequality $L_P(f) \leq L \leq U_P(f)$ holds for each partition P of K.

(\Leftarrow) In order to show that L(f, K) = U(f, K), we show that L(f, K) = L, and U(f, K) = L. Since the inequality $L_P(f) \le L \le U_P(f)$ holds for each partition P of K, we have $L(f, K) = \sup_P L_P(f) \le$ $L \le \inf_P U_P(f) = U(f, K)$. Suppose that L(f, K) < L (resp. L < U(f, K)), then $\exists \epsilon_0 > 0$ such that $L(f, K) < L - \epsilon_0$ (resp. $L + \epsilon_0 < U(f, K)$). Thus, for each partition P of K, we have $L_P(f) \le L(f, K) < L - \epsilon_0 < L \le U_P(f)$ (resp. $L_P(f) \le L < L + \epsilon_0 < U(f, K) \le U_P(f)$) which contradicts to the uniqueness of L. This implies that L(f, K) = L (resp. U(f, K) = L), and L(f, K) = L = U(f, K), i.e. f is integrable on K.

Criterion of integrability: Let f be a bounded function defined on K. Then the following are equivalent.

(1) f is integrable on K, i.e. L(f, K) = U(f, K), with integral $L = \int_K f = L(f, K)$

(2) (Riemann Criterion for Integrability) $\forall \epsilon > 0, \exists$ partition P_{ϵ} , of K, such that if P is a refinement of P_{ϵ} , then $|U_P(f) - L_P(f)| < \epsilon$.

(3) (Cauchy Criterion for Integrability) $\forall \epsilon > 0, \exists \text{ partition } P_{\epsilon}, \text{ of } K, \text{ such that if } P \text{ and } Q \text{ are any refinements of } P_{\epsilon}, \text{ and } S_P(f, K) \text{ and } S_Q(f, K) \text{ are any corresponding Riemann sums, then } |S_P(f, K) - S_Q(f, K)| < \epsilon.$

(4) $\forall \epsilon > 0, \exists$ partition P_{ϵ} , of K, such that if P is any refinement of P_{ϵ} , and $S_P(f, K)$ is any corresponding Riemann sum, then $|S_P(f, K) - L| < \epsilon$.

Proof Since $L_P(f) \leq L(f, K) \leq U(f, K) \leq U_P(f)$, (by drawing a picture) one notes that $|U(f, K) - L(f, K)| \leq^{(*)} |U_P(f) - L_P(f)| \leq^{(\dagger)} |U_P(f) - L| + |L_P(f) - L|.$

 $(1) \Rightarrow (2)$: Given $\epsilon > 0$, since L(f, K) = U(f, K) (and by the definitions that L(f, K) being the smallest number that satisfies $L(f, K) \ge L_P(f)$, and U(f, K) being the largest number that satisfies $U(f, K) \le U_P(f)$ for all P), there exists a partition P_{ϵ} such that

$$L(f, K) - \epsilon/2 < L_{P_{\epsilon}}(f) \le L(f, K),$$

and

$$L(f,K) = U(f,K) \le U_{P_{\epsilon}}(f) < U(f,K) + \epsilon/2 = L(f,K) + \epsilon/2.$$

Thus, if P is any refinement of P_{ϵ} , then

$$L(f,K) - \epsilon/2 < L_{P_{\epsilon}}(f) \le L_P(f) \le U_P(f) \le U_{P_{\epsilon}}(f) < L(f,K) + \epsilon/2.$$

Setting L = L(f, K) in the (second) inequality (†), we get that

$$|U_P(f) - L_P(f)| \le |U_P(f) - L| + |L_P(f) - L| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Thus, the conclusion of (2) holds.

 $(2) \Rightarrow (1)$: For each $\epsilon > 0$, since the (first) inequality (*), and (2) hold, there exists a partition P_{ϵ} such that if P is any refinement of P_{ϵ} , then

$$|U(f,K) - L(f,K)| \le |U_P(f) - L_P(f)| < \epsilon.$$

Letting $\epsilon \to 0$, we get

$$0 \leq \lim_{\epsilon \to 0} |U(f, K) - L(f, K)| \leq \lim_{\epsilon \to 0} \epsilon = 0 \Rightarrow U(f, K) = L(f, K)$$

Handout 5 (Continued)

and f is integrable.

For any refinements P, Q of P_{ϵ} , we have $(2) \Leftrightarrow (3) : |$

$$L_{P_{\epsilon}}(f) \leq L_{P}(f) \leq S_{P}(f, K) \leq U_{P}(f) \leq U_{P_{\epsilon}}(f)$$

$$L_{P_{\epsilon}}(f) \leq L_{Q}(f) \leq S_{Q}(f, K) \leq U_{Q}(f) \leq U_{P_{\epsilon}}(f)$$

Thus, we have

$$|S_P(f,K) - S_Q(f,K)| \le |U_{P_{\epsilon}}(f) - L_{P_{\epsilon}}(f)|$$

and $(2) \Rightarrow (3)$.

Conversely, for any refinements P, Q of P_{ϵ} , if $|S_P(f, K) - S_Q(f, K)| < \epsilon/2$ then, since

$$|U_P(f) - L_Q(f)| = \sup |S_P(f, K) - S_Q(f, K)|,$$

where the supremum is taken on all possible Riemann sum $S_P(f, K)$ and $S_Q(f, K)$ corresponding to the given (fixed) partitions P and Q, respectively, we have

$$|U_P(f) - L_Q(f)| \le \sup |S_P(f, K) - S_Q(f, K)| \le \epsilon/2$$

 $\boxed{(3) \Leftrightarrow (4):}$ Let $\{Q_j\}$ be a sequence of refinements of P_{ϵ} such that $Q_j \subset Q_{j+1}$ and $\lim_{j \to \infty} ||Q_j|| = 0$.

$$S_P(f,K) - L| = \lim_{j \to \infty} |S_P(f,K) - S_{Q_j}(f,K)| \le \epsilon$$

and $(3) \Rightarrow (4)$. Conversely, since

$$|S_P(f,K) - S_Q(f,K)| \le |S_P(f,K) - L| + |S_Q(f,K) - L|$$

holds, we have $(4) \Rightarrow (3)$.

Example (1). For
$$a < b$$
, let $f(x) = \begin{cases} a & \text{if } x \in \mathbb{Q} \cap [0, 1], \\ b & \text{if } x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$

Then f is not continuous at each $x \in [a, b]$ and f is not integrable on [0, 1] since $L_P(f, [0, 1]) = a \neq a$ $b = U_P(f, [a, b])$ for any partition P of

Example (2). Let $f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \cap [0, 1], \text{ where } m, n \in \mathbb{N} = \{1, 2, \ldots\} \text{ and } \gcd(m, n) = 1, \\ 1 & \text{if } x = 0, \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$

Then f is integrable on [0,1] and f is continuous at every irrational and discontinuous at every rational.

Observations. (1) There are finitely many rational numbers $\frac{p}{q} \in [0, 1]$ such that q < n. In fact, for fixed q < n, the number of $\frac{p}{q} \in [0, 1]$ is at most q + 1, which is at most n. Moreover, there are less than n positive q such that q < n. Thus, the set $A_n = \{ \frac{p}{q} \in [0,1] : q < n \}$ contains no more than n^2 element and note that if $\frac{m}{n} \in (0,1)$ is in lowest terms (*m* and *n* have no common factors except one), then $\min\{|\frac{p}{q} - \frac{m}{n}| : \frac{p}{q} \in A_n\} > \frac{1}{n^2}$.

(2) Fix $2 \le n \in \mathbb{N}$, and let $\hat{P} = \{ \frac{p}{q} \pm \frac{1}{n^3} : q < n, q \in \mathbb{N}, p = 0, 1, \dots, q-1 \}$. Since the set \hat{P} is finite, it yields a partition $P = (\hat{P} \cap [0, 1]) \cup \{1\}$ of [0, 1]. Define a step function

$$s_n(x) = \begin{cases} 1 & \text{if } \exists q \in \mathbb{N}, p \in \{0, 1, \dots, q-1\} \text{ with } q < n \text{ such that } \frac{p}{q} - \frac{1}{n^3} < x < \frac{p}{q} + \frac{1}{n^3}, \\ 0 & \text{if there do not exist such } p \text{ and } q. \end{cases}$$

Also, define $f_n(x) = \begin{cases} f(x) & \text{if } \exists q \in \mathbb{N}, p \in \{0, 1, \dots, q-1\} \text{ with } q < n \text{ such that } \frac{p}{q} - \frac{1}{n^3} < x < \frac{p}{q} + \frac{1}{n^3}, \\ 0 & \text{if there do not exist such } p \text{ and } q. \end{cases}$

For each $n \ge 2$, since A_n contains no more than n^2 elements, there exist no more than n^2 intervals $(\frac{p}{q} - \frac{1}{n^3}, \frac{p}{q} + \frac{1}{n^3})$ in the interval [0, 1]. Thus, we have $0 \le U(f_n, [0, 1]) \le U_P(f_n, [0, 1]) \le U_P(s_n, [0, 1]) = \int_0^1 s_n(x) \le n^2(\frac{2}{n^3}) = \frac{2}{n}$ for all $n \ge 2$. By letting n go to infinity, we get $0 = U(f, [0, 1]) \ge L(f, [0, 1]) = 0$. This proves that f is integrable on [0, 1].

(3) Let $x = \frac{m}{n}$ be a rational number in lowest terms. Note that if $y \in [0,1]$ satisfying that $|y - x| < \frac{1}{4n^2} = \frac{1}{(2n)^2}$ then either $y \in [0,1] \setminus \mathbb{Q}$ or $y = \frac{p}{q}$ with q < 2n (since any $\frac{p}{q} \in A_{2n}$ will have $|x - \frac{p}{q}| \ge \frac{1}{(2n)^2}$). Assume f is continuous at x. Given $\epsilon = \frac{1}{2n}$, there exists $\delta > 0$ such that if $y \in [0,1]$ and $|y - x| < \delta$ then $|f(x) - f(y)| < \epsilon$. Let $d = \min\{\delta, \frac{1}{(2n)^2}\}$ and note that if $y \in [0,1]$ and |y - x| < d then $|f(x) - f(y)| > \frac{1}{2n}$ (regardless that y is rational or irrational). This contradicts our assumption.

(4) Let $\alpha \in [0,1] \setminus \mathbb{Q}$. Given $\epsilon > 0$, choose $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$. Since there are finitely many rational numbers $\frac{p}{q} \in [0,1]$ such that q < n, the minimum distance δ between $\frac{p}{q}$ and α for q < n, i.e. $\delta = \min\{|\alpha - \frac{p}{q}| : q < n\}$, exists and it is positive since α is irrational. If $|x - \alpha| < \delta$, then either $x \in [0,1] \setminus \mathbb{Q}$, or $x = \frac{p}{q}$ with p and q having no common factors except one and $q \ge n$, since

$$|x - \alpha| < \delta. \text{ Thus, we have } |f(x) - f(\alpha)| = \begin{cases} 0 < \epsilon & \text{if } x \in (\alpha - \delta, \alpha + \delta) \setminus \mathbb{Q}, \\ |f(\frac{p}{q})| = \frac{1}{q} \le \frac{1}{n} < \epsilon & \text{if } x = \frac{p}{q} \in (\alpha - \delta, \alpha + \delta). \end{cases}$$

Some basic properties of integrable functions on calls:

Some basic properties of integrable functions on cells:

(1) Suppose that K, K_1, K_2 are closed n-cells such that $K = K_1 \cup K_2$, and $Int(K_1) \cap Int(K_2) = \emptyset$. If f is integrable on K, then f is integrable on K_1 , and K_2 , and $\int_K f = \int_{K_1} f + \int_{K_2} f$.

Proof. Given $\epsilon > 0$, since f is integrable, there is a partition P_{ϵ} of K such that if P is any refinement of P_{ϵ} , then $|U_P(f, K) - L_P(f, K)| < \epsilon$. For i = 1, 2, let $P_{\epsilon,i} = P_{\epsilon} \cap K_i$, then $P_{\epsilon,i}$ is a partition of K_i , and $P_{\epsilon,1} \cup P_{\epsilon,2}$ is a refinement of P_{ϵ} . Thus, we have

$$\epsilon > U_{P_{\epsilon,1}\cup P_{\epsilon,2}}(f, K_1 \cup K_2) - L_{P_{\epsilon,1}\cup P_{\epsilon,2}}(f, K_1 \cup K_2) = U_{P_{\epsilon,1}}(f, K_1) - L_{P_{\epsilon,1}}(f, K_1) + U_{P_{\epsilon,2}}(f, K_2) - L_{P_{\epsilon,2}}(f, K_2) \geq U_{P_{\epsilon,i}}(f, K_i) - L_{P_{\epsilon,i}}(f, K_i) \geq 0$$

Thus, for each i = 1, 2,

$$\epsilon > U_{P_{\epsilon,i}}(f, K_i) - L_{P_{\epsilon,i}}(f, K_i) \ge 0$$

and if P_i is any refinement of $P_{\epsilon,i}$, then

$$\epsilon > U_{P_{\epsilon,i}}(f, K_i) - L_{P_{\epsilon,i}}(f, K_i) \ge U_{P_i}(f, K_i) - L_{P_i}(f, K_i) \ge 0.$$

This implies that f is Riemann integrable on K_i and $L_i = \int_{K_i} f$ exists, for i = 1, 2, and

$$\begin{split} L &= L(f, K) = \sup\{L_P(f) \mid P \text{ is any refinement of } P_{\epsilon}\} \\ &\leq \sup\{L_{P_1}(f) + L_{P_2}(f) \mid P_i \text{ is any refinement of } P_{\epsilon,i} i = 1, 2\} \\ &\leq L_1 + L_2 \\ &\leq \inf\{U_{P_1}(f) + U_{P_2}(f) \mid P_i \text{ is any refinement of } P_{\epsilon,i} i = 1, 2\} \\ &= \inf\{U_P(f) \mid P \text{ is any refinement of } P_{\epsilon,1} \cup P_{\epsilon,2}\} \\ &= U(f, K) = L \end{split}$$

Thus, we have $L = L_1 + L_2$.

(2) If f and g are integrable on K, then, for any $c \in \mathbb{R}$, cf + g is integrable on K, and $\int_K (cf + g) = c \int_K f + \int_K g$.

Proof. Given $\epsilon > 0$, since f, g are integrable on K, there exists a partition P_{ϵ} of K such that if P is any refinement of P_{ϵ} then

$$|U_P(f) - L_P(f)| < \epsilon/2(1+|c|)$$

Handout 5 (Continued)

and

$$|U_P(g) - L_P(g)| < \epsilon/2$$

Thus, we have

$$|U_P(cf+g) - L_P(cf+g)| \le |c||U_P(f) - L_P(f)| + |U_P(g) - L_P(g)| < |c|\epsilon/2(1+|c|) + \epsilon/2 < \epsilon$$

which implies that cf + g is integrable on K. Let $\{P_j\}$ be a sequence of partitions of K satisfying that $P_j \subset P_{j+1}$ for all j = 1, 2, ..., and $\lim_{i \to \infty} ||P_j|| = 0$. Since

$$\int_{K} f = \lim_{j \to \infty} S_{P_j}(f, K) \text{ and } \int_{K} g = \lim_{j \to \infty} S_{P_j}(g, K),$$

we have

$$c\int_{K} f + \int_{K} g = c \lim_{j \to \infty} S_{P_{j}}(f, K) + \lim_{j \to \infty} S_{P_{j}}(g, K)$$

$$= \lim_{j \to \infty} S_{P_{j}}(cf, K) + \lim_{j \to \infty} S_{P_{j}}(g, K)$$

$$= \lim_{j \to \infty} S_{P_{j}}(cf + g, K)$$

$$= \int_{K} (cf + g).$$

(3) Suppose that f and g are integrable on K. If $f(x) \leq g(x)$ for each $x \in K$, then $\int_K f \leq \int_K g$. **Proof.** Since $-f + g \geq 0$ on K and, by (2), it is integrable on K, we have

$$0 \le L_P(-f+g) \le \int_K (-f+g) = -\int_K f + \int_K g,$$

where P is any partition of K. Since $\int_K f \in \mathbb{R}$, by adding $\int_K f$ on both sides of the inequality, we get $\int_K f \leq \int_K g$.

(4) If f is integrable on K, then |f| is integrable on K, and $|\int_K f| \leq \int_K |f|$.

Proof. Given $\epsilon > 0$, since f is integrable on K, there exists a partition P_{ϵ} of K such that if $P = \{K_j\}_{j=1}^m$ is any refinement of P_{ϵ} then

$$|U_P(|f|) - L_P(|f|)| = |\sum_{i=1}^m \left(\sup_{K_i} |f| - \inf_{K_i} |f|\right) c(K_i)| \le |\sum_{i=1}^m \left(\sup_{K_i} f - \inf_{K_i} f\right) c(K_i)| = |U_P(f) - L_P(f)| < \epsilon.$$

Thus, |f| is integrable (by Riemann's Criterion for integrability).

Since $\pm f$, |f| are integrable, and $\pm f \leq |f|$ on K, we have $\pm \int_K f \leq \int_K |f| \Rightarrow |\int_K f| \leq \int_K |f|$. Examples of integrability.

(1) Let $Z \subset \mathbb{R}^n$ have (n-)content zero, and f be a bounded function defined on Z. Then f is integrable on Z, and $\int_Z f = 0$.

Proof. For each $\epsilon > 0$, since Z has content zero, there exists a collection of cells $\{K_i\}_{i=1}^m$ such that $Z \subset \bigcup_{i=1}^m K_i = K$, and $\sum_{i=1}^m c(K_i) < \epsilon/2 (\sup_Z |f| + 1)$. Define

$$\bar{f}(x) = \begin{cases} f(x) & \text{if } x \in Z, \\ 0 & \text{if } x \in K \setminus Z. \end{cases}$$

Then,

$$|\bar{f}|(x) = \begin{cases} |f|(x) \ge 0 & \text{if } x \in Z, \\ 0 & \text{if } x \in K \setminus Z, \end{cases}$$

Handout 5 (Continued)

and note that

$$\begin{aligned} |\sup_{K_j \cap Z} f - \inf_{K_j \cap Z} f| &= |\sup_{K_j \cap Z} \bar{f} - \inf_{K_j \cap Z} \bar{f}| \\ &\leq |\sup_{K_j} \bar{f} - \inf_{K_j} \bar{f}| \\ &\leq |\sup_{K_j} |\bar{f}| - \inf_{K_j} \left(- |\bar{f}| \right)| \\ &= |\sup_{K_j} |\bar{f}| - \left(- \sup_{K_j} |\bar{f}| \right)| \\ &= 2 \sup_{K_j} |\bar{f}| = 2 \sup_{K_j \cap Z} |f| \\ &\leq 2M. \end{aligned}$$

Thus, if P is any partition of $K = \bigcup_{i=1}^{m} K_i$, we have

$$|U_P(f,Z) - L_P(f,Z)| \le 2 \sup_Z |f| \sum_{i=1}^m c(K_i) < \epsilon$$

which implies that f is integrable on Z with $\int_Z f = 0$.

(2) Let I be a closed interval in \mathbb{R} , and f be a bounded and monotonic function defined on I = [a, b]Then f is integrable on I.

Proof. Since f is bounded on I, $L(f, I) = \sup_{P} L_P(f)$ and $U(f, I) = \inf_{P} U_P(f)$ exist.

Let P_n be the partition that divides I into 2^n equal length subintervals. Thus,

$$\lim_{n \to \infty} L_{P_n}(f) = L(f, I) \text{ and } \lim_{n \to \infty} U_{P_n}(f) = U(f, I).$$

Since

$$\lim_{n \to \infty} |U_{P_n}(f) - L_{P_n}(f)| = \lim_{n \to \infty} (f(b) - f(a))(b - a)/2^n = 0,$$

we get L(f, I) = U(f, I), i.e. f is integrable on I.

(3) Let K be a closed n-cell, and f be a continuous function on K. Then f is integrable on K. **Proof.** Since f is continuous on (compact set) K, f is uniformly continuous on K. Hence, for any given $\epsilon > 0$ there exists $\delta > 0$ such that

if
$$x, y \in K$$
 and $||x - y|| < \delta$ then $|f(x) - f(y)| < \epsilon/(c(K) + 1)$.

Let P_{ϵ} be a partition of K such that $||P_{\epsilon}|| = \max_{K_j \in P_{\epsilon}} \operatorname{diam}(K_j) = \max_{K_j \in P_{\epsilon}} \sup\{||x - y|| : x, y \in K_j\} < \delta$. If P is any refinement of P_{ϵ} then $|U_P(f) - L_P(f)| < \epsilon c(K)/(c(K) + 1) < \epsilon$.

Therefore, f is integrable on K.

(4) Let K be a closed n-cell, and f be a bounded function defined on K. If there exists a (n-)content zero subset $Z \subset K$, such that f is continuous on $K \setminus Z$, i.e. f is continuous everywhere on K except at a content zero subset Z of K, then f is integrable on K.

Proof. For each $\epsilon > 0$, since Z has content zero, there exists a collection of cells $\{I_i\}_{i=1}^l$ such that

$$Z \subset \operatorname{Int}\left(\bigcup_{i=1}^{l} I_{i}\right), \ \operatorname{Int}I_{i} \cap \operatorname{Int}I_{j} = \emptyset, \ \text{and} \ \sum_{i=1}^{l} c(I_{i}) < \epsilon/4 \left(\sup_{K} |f| + 1\right).$$

Since $K \setminus \text{Int}(\bigcup_{i=1}^{i} I_i)$ is compact, f is uniformly continuous there. Thus, for the given $\epsilon > 0$, there exists a $\delta > 0$ such that if

$$x, y \in K_j \setminus \operatorname{Int}\left(\bigcup_{i=1}^{l} I_i\right)$$
, then $|f(x) - f(y)| < \epsilon/2(c(K) + 1)$.

Advanced Calculus

Let $P_{\epsilon} = \{K_j\}_{j=1}^m$ be a partition of K such that $\{I_i \cap K\}_{i=1}^l \subset P_{\epsilon}$ and $\|P_{\epsilon}\| = \max_{1 \le j \le m} \sup_{x,y \in K_j} \|x-y\| < \delta$. If P is any refinement of P_{ϵ} then, by using (1) and (3), we have

$$\begin{aligned} |U_{P}(f) - L_{P}(f)| &\leq \sum_{i=1}^{l} \left(\sup_{Z \cap I_{i}} f - \inf_{Z \cap I_{i}} f \right) c(I_{i}) + |U_{P}(f, K \setminus \operatorname{Int} \left(\cup_{i=1}^{l} I_{i} \right)) - L_{P}(f, K \setminus \operatorname{Int} \left(\cup_{i=1}^{l} I_{i} \right))| \\ &\leq 2 \sup_{Z} |f| \sum_{i=1}^{l} c(I_{i}) + c(K) \epsilon / 2 (c(K) + 1) \\ &< \epsilon \end{aligned}$$

This implies that f is integrable on K.

Theorems: (1) Suppose f and g are integrable on a closed n-cell K, and f = g everywhere on K except at a content zero subset Z of K, then $\int_K f = \int_K g$.

Proof. Since f, g are integrable on K and Z has content zero, f - g is integrable on K and it is continuous with value 0 on $K \setminus Z$. Given $\epsilon > 0$, let $\{I_i\}_{i=1}^l$ be a collection of cells such that

$$Z \subset \operatorname{Int}\left(\bigcup_{i=1}^{l} I_i\right) \text{ and } \sum_{i=1}^{l} c(I_i) < \epsilon/4 \left(\sup_{K} |f-g|+1\right).$$

Let $P_{\epsilon} = \{K_j\}_{j=1}^m$ such that $\{I_i \cap K\}_{i=1}^l \subset P_{\epsilon}$. Thus, if P is any refinement of P_{ϵ} then

$$\begin{aligned} |U_P(f-g) - L_P(f-g)| &\leq |U_P(f-g, K \setminus \operatorname{Int}\left(\bigcup_{i=1}^l I_i\right)) - L_P(f-g, K \setminus \operatorname{Int}\left(\bigcup_{i=1}^l I_i\right))| \\ &+ \sum_{i=1}^l \left(\sup_{Z \cap I_i} (f-g) - \inf_{Z \cap I_i} (f-g)\right) c(I_i) \\ &< \epsilon. \end{aligned}$$

This implies that $\int_K (f - g) = 0$. Since $\int_K g \in \mathbb{R}$, we have $\int_K f = \int_K g$.

(2) Fundamental Theorem of Calculus Let f be integrable on [a, b]. For each $x \in [a, b]$, let $F(x) = \int_{a,x]} f = \int_a^x f(t)dt$. Then F is continuous on [a, b]; moreover, F'(x) exists and equals f(x) at every x at which f is continuous.

Remark. For each $x \in [a, b]$, the existence of F(x) is due to $[a, x] \subseteq [a, b]$ and the existence of $\int_a^b f$. Existence of $\int_a^b f$ implies that for each $\epsilon > 0 \exists$ a partition P_{ϵ} of [a, b] such that if P is any refinement of P_{ϵ} , then $|U_P(f, [a, b]) - L_P(f, [a, b])| < \epsilon$. Let

$$P_{\epsilon}^{l} = P_{\epsilon} \cap [a, x] \text{ and } P_{\epsilon}^{r} = P_{\epsilon} \cap [x, b].$$

Then $P^l_{\epsilon} \cup P^r_{\epsilon}$ is a refinement of P_{ϵ} and if P^l is any refinement of P^l_{ϵ} , then

$$\begin{aligned} |U_{P_{\epsilon}^{l}}(f,[a,x]) - L_{P_{\epsilon}^{l}}(f,[a,x])| &\leq |U_{P_{\epsilon}^{l}}(f,[a,x]) - L_{P_{\epsilon}^{l}}(f,[a,x]) + U_{P_{\epsilon}^{r}}(f,[x,b]) - L_{P_{\epsilon}^{r}}(f,[x,b])| \\ &= |U_{P_{\epsilon}^{l} \cup P_{\epsilon}^{r}}(f,[a,b]) - L_{P_{\epsilon}^{l} \cup P_{\epsilon}^{r}}(f,[a,b])| \\ &< \epsilon. \end{aligned}$$

Hence, f is integrable on [a, x], i.e. F(x) exists. **Proof of the Theorem.** If $x, y \in [a, b] \Rightarrow F(y) - F(x) = \int_x^y f(t)dt$. Let $c = \sup\{|f(t)| : t \in [a, b]\}$. (c exists since f is integrable on $[a, b] \Rightarrow f$ is bounded on [a, b].) Then $|F(y) - F(x)| \le |\int_x^y |f(t)|dt| \le c |\int_x^y dt| = c|y - x|$ $\Rightarrow F$ is (Lipschitz, hence) continuous on [a, b]. Suppose that f is continuous at x; thus $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $t \in [a, b]$ and $|t - x| < \delta$ then $|f(t) - f(x)| < \epsilon$. Since $f(x) = f(x) \frac{1}{y-x} \int_x^y dt = \frac{1}{y-x} \int_x^y f(x) dt$. Hence, if $y \in [a, b]$ and $|y - x| < \delta \Rightarrow t \in [a, b]$ and $|t - x| < \delta$ for all t between y and x. $\Rightarrow |f(t) - f(x)| < \epsilon$ and this implies that $\Rightarrow |\frac{F(y) - F(x)}{y - x} - f(x)| \le \frac{1}{|y - x|} |\int_x^y |f(t) - f(x)| dt| \le \frac{1}{|y - x|} |\int_x^y \epsilon dt| = \epsilon.$ $\Rightarrow \lim_{y \to x} \frac{F(y) - F(x)}{y - x} = f(x), \text{ i.e. } F'(x) \text{ exists and equals } f(x) \text{ at every } x \text{ at which } f \text{ is continuous.}$ (3) Let F be a continuous function on [a, b] that is differentiable except at finitely many points in [a, b], and let f be a function on [a, b] that agrees with F' at all points where F' is defined. If f is integrable on [a, b], then $\int_a^b f(t)dt = F(b) - F(a)$. **Proof.** Let $\{z_1, \ldots, z_m\} \subset [a, b]$ be the set at which F' does not exist, i.e. F is not differentiable at $z_i, i = 1, \ldots, m.$ Let $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ be a partition of [a, b] with $z_i, i = 1, \ldots, m$, being partition point, i.e. each $z_i \in \{x_0, x_1, ..., x_n\}$. \Rightarrow F is continuous on each $[x_{j-1}, x_j], j = 1, \dots, n$, and differentiable on each (x_{j-1}, x_j) . By the Mean Value Theorem, $F(x_j) - F(x_{j-1}) = F'(t_j)(x_j - x_{j-1}) = f(t_j)(x_j - x_{j-1})$ for some $t_i \in (x_{i-1}, x_i)$ and for each $j = 1, \ldots, n$. Thus, we have $F(b) - F(a) = \sum_{j=1}^{n} F(x_j) - F(x_{j-1}) = \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1})$ $\Rightarrow L_P(f, [a, b]) \le F(b) - F(a) \le U_P(f, [a, b])$ $\Rightarrow \sup_P L_P(f, [a, b]) \le F(b) - F(a) \le \inf_P U_P(f, [a, b])$ If f is integrable then $\int_a^b f(t)dt = \sup_P L_P(f, [a, b]) = \inf_P U_P(f, [a, b]) = F(b) - F(a).$

Part 2: Integrable Functions on General Measurable Sets:

In the following we shall extend the concept of **content of a cell in** \mathbb{R}^n to more general **measurable subsets of** \mathbb{R}^n and extend the definition of integrability of a function to general subsets of \mathbb{R}^n .

Definition (of integrability on general Euclidaen bounded subsets.) Let $A \subset \mathbb{R}^n$ be a bounded set and let $f : A \to \mathbb{R}$ be a bounded function. Let K be a closed cell containing A and define $f_K : K \to \mathbb{R}$ by

$$f_K(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \in K \setminus A. \end{cases}$$

We say that f is integrable on A if f_K is integrable on K, and define $\int_A f = \int_K f_K$.

Remark. If A = K is a closed cell in \mathbb{R}^n , then, since $f_K = f$ on K, it is obvious the integrability of f on A agrees with the integrability of f_K on K and $\int_A f$ is defined to be $\int_K f_K$.

Remark. Let *I* be any closed cell containing *A*. Then $K \cap I$ is a closed cell containing $A \Rightarrow f_K = f_{K\cap I} = f_I$ everywhere in $K \cap I$, $f_K = 0$ on $K \setminus (K \cap I)$, and $f_I = 0$ on $I \setminus (K \cap I)$. Hence, $\int_K f_K = \int_{K\cap I} f_{K\cap I} = \int_I f_I \Rightarrow$ the definition (of integrability of *f*) only depends on *f* and *A* (and it is independent of the choice of $K \supseteq A$).

Basic properties of integrable functions on general sets:

(1). Let f and g be integrable functions defined on a bounded set $A \subset \mathbb{R}^n$ and let $\alpha, \beta \in \mathbb{R}$. Then the function $\alpha f + \beta g$ is integrable on A and $\int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g$.

Proof. For any partition P of a cell $K \supseteq A$, since $S_P(\alpha f_K + \beta g_K, K) = \alpha S_P(f_K, K) + \beta S_P(g_K, K)$ when the same intermediate points x_j are used, the function $\alpha f + \beta g$ is integrable on A. Thus, by choosing the intermediate points from A whenever it is possible, we obtain that $S_P(\alpha f + \beta g, A) = \alpha S_P(f, A) + \beta S_P(g, A)$ which implies that $\int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g$.

(2) Let A_1 and A_2 be bounded sets with no pints in common, and let f be a bounded function. If f is integrable on A_1 and on A_2 , then f is integrable on $A_1 \cup A_2$ and $\int_{A_1 \cup A_2} f = \int_{A_1} f + \int_{A_2} f$.

Proof. Let K be a closed cell containing both A_1 and A_2 , and let $f_K(x) = \begin{cases} f(x) & \text{if } x \in A_1 \cup A_2, \\ 0 & \text{if } x \in K \setminus (A_1 \cup A_2) \end{cases}$ and $f_K^i(x) = \begin{cases} f(x) & \text{if } x \in A_i, \\ 0 & \text{if } x \in K \setminus A_i \end{cases}$ for i = 1, 2. Since f is integrable on $A_i, i = 1, 2, f_K^i$ is integrable on K and, since $f_K = f_1^1 \pm f_2^2$ and f is integrable.

on K and, since $f_K = f_K^1 + f_K^2$, and f is integrable on $A_1 \cup A_2$. Also, for any partition P of K, note that $S_P(f_K, K) = S_P(f_K^1, K) + S_P(f_K^2, K)$ when the same intermediate points x_j are used. Thus, we have $\int_{A_1 \cup A_2} f = \int_{A_1} f + \int_{A_2} f$.

(3) If $f: A \to \mathbb{R}$ is integrable on (bounded set) A and $f(x) \ge 0$ for $x \in A$, then $\int_A f \ge 0$.

Proof. For any closed cell $K \supseteq A$ and any partition P of K, note that $S_P(f_K, K) \ge 0$ for any Riemann sum. Thus, $\int_A f \ge 0$.

Remark. This implies that if f and g are integrable on A and $f(x) \leq g(x)$ for $x \in A$, then (a) $\int_A f \leq \int_A g$, and (b) |f| is integable on A, and $|\int_A f| \leq \int_A |f|$.

(4) Let $f: A \to \mathbb{R}$ be a bounded function and suppose that A has content zero. Then f is integrable on A and $\int_A f = 0$.

Proof. Let $K \supseteq A$ be a closed cell. If $\epsilon > 0$ is given, let P_{ϵ} be a partition of K such that those cells in P_{ϵ} which contain points of A have total content less than ϵ . Now if P is a refinement of P_{ϵ} , then those cells in P containing points of A will also have total content less than ϵ . Hence if $|f(x)| \leq M$ for $x \in A$, we have $|S_P(f_K, K) - 0| \leq M\epsilon$ for any Riemann sum corresponding to P. Since ϵ is arbitrary, this implies that $\int_A f = 0$.

(5) Let $f, g: A \to \mathbb{R}$ be bounded functions and suppose that f is integrable on (bounded set) A. Let $Z \subseteq A$ have content zero and suppose that f(x) = g(x) for all $x \in A \setminus Z$. Then g is integrable on A and $\int_A f = \int_A g$.

Proof. Extend f and g to functions f_K , g_K defined on a closed cell $K \supseteq A$. Thus, the function $h_K = f_K - g_K$ is bounded and equals 0 except on Z. Hence, h_K is integrable on K and $\int_K h_K = 0$. Since f_K is also integrable on K, we have $\int_A f = \int_K f_K = \int_K (f_K - h_K) = \int_K g_K = \int_A g$. (6) Let U be a connected, open subset of \mathbb{R}^n and let $f: U \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ be a C^1 map on U. If K is

any convex, compact subset of U, then f(K) has measure (or content) zero.

Definition. Let $A \subset \mathbb{R}^n$ be a bounded set. The characteristic function of A is the function χ_A

defined by $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$ Now, suppose A is a bounded subset of \mathbb{R}^n and f is a bounded function on \mathbb{R}^n . Let K be a closed cell that contains A. We say that f is **integrable on** A if $f\chi_A$

is integrable on K, and define $\int_A f = \int_K f \chi_A$. (Note that $f \chi_A = 0$ on $K \setminus A$, so it is independent of the choice of $K \supset A$.)

Question: Let $f \equiv 1$ on $A \subset \mathbb{R}^n$. What does it mean when we say that f is integrable on A?

Definition. A set $A \subset \mathbb{R}^n$ is said to have content (or it is said to be (Jordan) measurable) if it is bounded and its boundary ∂A has content zero. Let $\mathscr{D}(\mathbb{R}^n) := \{A \subset \mathbb{R}^n \mid A \text{ has content}\} =$ $\{A \subset \mathbb{R}^n \mid A \text{ is measurable }\})$ denote the set of all measurable subsets of \mathbb{R}^n .

Remark. If $A \in \mathscr{D}(\mathbb{R}^n)$ and if K is a closed cell containing A, then the function g_K defined

by $g_K(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in K \setminus A \end{cases}$ is continuous on K except possibly at points of ∂A (which has

content zero). Thus, g_K is integrable on K and we define the content of A, denoted c(A), by $c(A) = \int_K g_K = \int_A 1.$

Remark. $\forall \epsilon > 0$, since $c(A) = \int_K g_K$, \exists a partition $P_{\epsilon} = \{I_j\}_{j=1}^m$ of K such that $|S_{P_{\epsilon}}(g_k, K) - c(A)| < |S_{\epsilon}(g_k, K)$ ϵ for any Riemann sum $S_{P_{\epsilon}}(g_k, K)$. By choosing the intermediate points in $S_{P_{\epsilon}}(g_k, K)$ to belong to A whenever possible, we have $\sum_{j=1}^{m} c(I_j) + \epsilon \ge S_{P_{\epsilon}}(g_k, K) + \epsilon > c(A) > S_{P_{\epsilon}}(g_k, K) - \epsilon$, where the first inequality holds since $A \subset \bigcup_{j=1}^{m} I_j$.

Thus, we have: A set $A \subset \mathbb{R}^n$ has content zero if and only if A has content and $\int_A 1 =$ c(A) = 0.

Proof. (\Rightarrow) $\forall \epsilon > 0$, since A has content zero, \exists closed cells I_1, \ldots, I_m s.t. $\begin{cases}
A \subset \bigcup_{j=1}^m I_j = K_\epsilon \\ \sum_{j=1}^m c(I_j) < \epsilon.
\end{cases}$ Since (i) K_ϵ is bounded $\Rightarrow A$ is bounded, and (ii) K_ϵ is closed $\Rightarrow \partial A \subset K_\epsilon = \bigcup_{j=1}^m I_j$ with $\sum_{j=1}^m c(I_j) < \epsilon \Rightarrow c(\partial A) = 0$ $\Rightarrow A$ has content and $c(A) = \int_A 1 = \int_K g_K = 0$ since $0 \le c(A) < S_{P_\epsilon}(g_K, K) + \epsilon \le \sum_{j=1}^m c(I_j) + \epsilon \le 2\epsilon$ and ϵ is arbitrary. (\Leftarrow) Suppose that $A \subset \mathbb{R}^n$ has content and that $c(A) = 0 \Rightarrow \exists$ a closed cell K containing A s.t. the function $g_K(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in K \setminus A \end{cases}$ is integrable on K. $\forall \epsilon > 0$, let $P_\epsilon = \{I_j\}_{j=1}^m$ be a partition of K s.t. any Riemann sum corresponding to P_ϵ satisfies that $0 \le |S_{P_\epsilon}(g_K, K) - c(A)| < \epsilon$. Since c(A) = 0, we have $0 \le S_{P_\epsilon}(g_K, K) < \epsilon$. By taking the intermediate points in $S_{P_\epsilon}(g_K, K)$ to belong to A whenever possible, we have $A \subset \bigcup_{1 \le j \le m; I_j \cap A \ne \emptyset} I_j$ and $\sum_{1 \le j \le m; I_j \cap A \ne \emptyset} c(I_j) < \epsilon \Rightarrow c(A) = 0$.

Theorem. Let $A \in \mathscr{D}(\mathbb{R}^n)$ and let $f : A \to \mathbb{R}$ be integrable on A and such that $|f(x)| \leq M$ for all $x \in A$. Then $|\int_A f| \leq Mc(A)$. More generally, if f is real valued and $m \leq f(x) \leq M$ for all $x \in A$, then $(*) mc(A) \leq \int_A f \leq Mc(A)$.

Proof. Let f_K be the extension of f to a closed cell K containing A. If $\epsilon > 0$ is given, then there exists a partition $P_{\epsilon} = \{I_j\}_{j=1}^{h}$ of K such that if $S_{P_{\epsilon}}(f_K, K)$ is any corresponding Riemann sum, then $S_{P_{\epsilon}}(f_K, K) - \epsilon \leq \int_K f_K \leq S_{P_{\epsilon}}(f_K, K) + \epsilon$. We note that if the intermediate points of the Riemann sum are chosen outside of A whenever possible, we have $S_{P_{\epsilon}}(f_K, K) = \sum' f(x_j)c(I_j)$, where the sum is extended over those cells in P_{ϵ} entirely contained in A. Hence, $S_{P_{\epsilon}}(f_K, K) \leq M \sum' c(I_j) \leq M c(A)$. Therefore, we have $\int_A f = \int_K f_K \leq M c(A) + \epsilon$, and since $\epsilon > 0$ is arbitrary we obtain the right side of inequality (*). The left side is established in a similar manner.

Theorem. If $A \in \mathscr{D}(\mathbb{R}^n)$ and c(A) > 0, then there exists a closed cell $J \subseteq A$ such that $c(J) \neq 0$.

Mean Value Theorem. Let $A \in \mathscr{D}(\mathbb{R}^n)$ be a connected set and let $f : A \to \mathbb{R}$ be bounded and continuous on A. Then there exists a point $p \in A$ such that $\int_A f = f(p)c(A)$.

Proof. If c(A) = 0, the conclusion is trivial; hence we suppose that $c(A) \neq 0$. Let $m = \inf\{f(x) : x \in A\}$, and $M = \sup\{f(x) : x \in A\}$; it follows from the preceding theorem that $m \leq \frac{1}{c(A)} \int_A f \leq M$. If both inequalities are strict, the results follows from Intermediate Value Theorem (since f is continuous on A). Now suppose that $\int_A f = Mc(A)$. If the supremum M is attained at $p \in A$, the conclusion also follows. Hence we assume that the supremum M is not attained on A. Since $c(A) \neq 0$, there exists a closed cell $J \subseteq A$ such that $c(J) \neq 0$ (prove this). Since J is compact and f is continuous on J, there exists $\epsilon > 0$ such that $f(x) \leq M - \epsilon$ for all $x \in J$. Since $A = J \cup (A \setminus J)$ we have $Mc(A) = \int_A f = \int_J f + \int_{A \setminus J} f \leq (M - \epsilon)c(J) + Mc(A \setminus J) < Mc(A)$, a contradiction. If $\int_A f = mc(A)$, then a similar argument applies.

Mean Value Theorem for Riemann-Stieltjes Integrals. Let $A \in \mathscr{D}(\mathbb{R}^n)$ be a connected set, let $f : A \to \mathbb{R}$ be bounded and continuous on A, and let $g : A \to \mathbb{R}$ be bounded, nonnegative and continuous on A, Then there exists a point $p \in A$ such that $\int_A fg = f(p) \int_A g$.

Remark (Well-definedness of (Jordan) measurability). Note that the definition for a set having content (or the definition of a set being measurable) is well defined since the the following properties hold.

Proposition. Let $A, B \in \mathscr{D}(\mathbb{R}^n)$ and let $x \in \mathbb{R}^n$. Then (1) $A \cap B, A \cup B \in \mathscr{D}(\mathbb{R}^n)$ and $c(A) + C(B) = c(A \cap B) + c(A \cup B)$. Using induction, this concludes

that if $A \in \mathscr{D}(\mathbb{R}^n)$ and A is a finite disjoint union of measurable subsets, i.e. $A = \bigcup_{i=1}^{n} B_i$ and each

$$B_i \in \mathscr{D}(\mathbb{R}^n), \text{ then } c(A) = \sum_{i=1}^l c(B_i).$$
(2) $A \setminus B, B \setminus A \in \mathscr{D}(\mathbb{R}^n), \text{ and } c(A \cup B) = c(A \setminus B) + c(A \cap B) + c(B \setminus A).$

(3) If $x + A = \{x + a \mid a \in A\}$ then $x + A \in \mathscr{D}(\mathbb{R}^n)$ and c(x + A) = c(A), i.e. the definition of content is invariant under translations.

Proof. By using the definition of boundary points of a set, we have $\partial(A \cap B)$, $\partial(A \cup B)$, $\partial(A \setminus B)$, $\partial(B \setminus A) \subset \partial A \cup \partial B$. Thus, $c(\partial(A \cap B)) = c(\partial(A \cup B)) = c(\partial(A \setminus B)) = c(\partial(B \setminus A)) = 0$ and $A \cap B$, $A \cup B$, $A \setminus B$, $B \setminus A \in \mathscr{D}(\mathbb{R}^n)$.

Now let $K \supseteq A \cup B$ be a closed cell and let $f_A, f_B, f_{A \cap B}, f_{A \cup B}$ be the functions equal to 1 on $A, B, A \cap B, A \cup B$, respectively, and equal 0 elsewhere on K. Then they are integrable on K and , since $f_A + f_B = f_{A \cap B} + f_{A \cup B}$, we have

$$c(A) + c(B) = \int_{K} f_{A} + \int_{K} f_{B} = \int_{K} (f_{A} + f_{B}) = \int_{K} (f_{A \cap B} + f_{A \cup B}) = \int_{K} f_{A \cap B} + \int_{K} f_{A \cup B}$$

= $c(A \cap B) + c(A \cup B).$

To prove (3), note that if $\epsilon > 0$ is given and if J_1, \ldots, J_m are cells with $\partial A \subset \bigcup_{i=1}^m J_i$ and $\sum_{i=1}^m c(J_i) < \epsilon$,

then $x + J_1, \ldots, x + J_m$ are cells with $\partial(x + A) \subset \bigcup_{i=1}^m (x + J_i)$ and $\sum_{i=1}^m c(x + J_i) < \epsilon$. Since $\epsilon > 0$ is arbitrary the set x + A belongs to $\mathscr{Q}(\mathbb{R}^n)$

arbitrary, the set x + A belongs to $\mathscr{D}(\mathbb{R}^n)$.

Let I be a closed cell containing A; hence x + I is a closed cell containing x + A. Let $f_1 : I \to \mathbb{R}$ be such that $f_1(y) = 1$ for $y \in A$ and $f_1(y) = 0$ for $y \in I \setminus A$, and let $f_2 : x + I \to \mathbb{R}$ be such that $f_2(y) = 1$ for $y \in x + A$ and $f_1(y) = 0$ for $y \in x + I \setminus (x + A)$. Thus, we have $f_1(y) = f_2(x + y)$ for each $y \in A$, and $c(A) = \int_I f_1 = \int_{x+I} f_2 = c(x + A)$.