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Let A C R? and f be a function defined over A. To define [ 4[> the integral of f over A, it is

reasonable to require that
p

(a) the content (volume) of A is measurable, e.g. if A = H[aj, b;] is a closed cell in R, one can
=1

==
—~
k)0“

define its content to be ¢(A) =
7j=1

(b) the function f is summable, i.e. integrable, over A.

In the first part of this handout, we shall discuss how to define the integral of a function on cells in
RP. In the second part of the handout, we shall extend the definition to a function on more general
(measurable) sets in RP.

’Part 1: Integrable Functions on Cells:

Definitions:
(a) K is called a cell in R? (or a p—cell, or a p—dimensional rectangle) if K = I; x --- x I,
where I; = [a;,b;] CRfor j=1,...,p.

(b) The (p—)content ¢(K) of K is defined to be ¢(K) = (by —a;) x - (b, — ay) H (b; — aj).

(c) A set Z C R” has p—content zero if Ve > 0, 3 a finite set ¢ = {K;}7-, of p—cells such that

(a) Z C LmJKj,

Jj=1

(b) Zc(Kj) <e

Remark 1. Note that the definition implies that if K is a cell (not necessarily closed) in R?; then
the boundary 0K of K is a set of p—content zero.

Remark 2. Note that the definition of the content for a cell is well defined since it is easy to see
that the following properties are satisfied.

l
(a) Let K be a cell in RP) and K is a finite disjoint union of cells in RP?), i.e. K = U K;, then

(b) Let K, K5 be cells in RP). Then ¢(K; U Ky) = c(K; \ Ka) + c(K1 N Ky) + (K \ Ky).

(c) Let x € RP, K be acell in RP) and x + K = {z + 2 | z € K}. Then x + K is a cell in R?) with
c(x + K) = ¢(K), i.e. the definition of content for cells is invariant under translations.

Remark 3. By taking €/2 > 0, if it is necessary, one may also assume that Z C Int( U K j).
j=1
Example (1). Let Z = {z; € R | lim z; = x}, a (0-dim’l) subset of R. Then (1 — dim’l) ¢(Z) =0
j—o0
since Ve > 0, Ja 1-d cell K, such that = € Int(K,), ¢(K,) < €/2, andz; € K,Vj > L. For each
j=1,...,L =1, let K; be a 1-d cell such that z; € K;, and ¢(K;) < €/(2L).
Example (2). Let Z =QnN[0,1], a (0-dim’l) subset of R. Then (1-dim’l) ¢(Z) # 0 since any finite
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collection ¢ = {Kj, ..., K,,} of 1—dimensional cells that satisfies (a) will have Z c(K;) > 1.
j=1
Example (3). Let Z = {(z,y) | || + |y| = 1}, a (1-dim’l) subset of R% Then the (2-d) content
c(Z)=0.
Definition (4). A collection of sets ¢ = {Kj}J-, in R" is called a partition of a set K in R" if

a) UKi = K, and

i=1

(b) IntK; NIntK; = 0 holds for each 1 <i # j < m. o '
Example Let K = [al,bl] X oo X an,bp) = Iy x -+ X I, and Py = {2, 2] 4] | a; =) < --- <

m(j = b;}, for j = 1,...,n, be a partition of [; into m(j) (a finite number of) closed cells in R.

Then the set P = {[];_ [ 10T, 7.0 10 <i; < m(j) — 1} (induced by P;’s) partitions K into
m(1) x -+ x m(n) (ﬁnlte number of) parallel closed n-cells.

Example. Let K = [0,1]x[2,4] C R? and foreachn =1,2,..., let P, = {[=*, £]x [2—1—2(Z ). ,24+2] |
1 < i < n} be a partition of K that divides each side of K mto n equal length subintervals. One
can define the norm of a partition P, to be the ||P,|| = nax diam(K;). In this example, the norm

of the partition is || P,|| =

Definition(5). Let P = {] }Z  and @ = {K;}"., be partitions of (an n-cell) K. We say that P is
a refinement of (), denoted ) C P, if each cell in P is contained in some cell in @, i.e. for
each I; € P 3 K; €  such that [; C K.

Note that if P, @) are partitions of K, then PN @ is a (common) refinement of P and @), and,
in general, P U (Q is Not a partition,

Example. Let K = [0,1] x[2,4] C R?, and for eachn =1,2,...,let P, = {[=}, L] x [2+ =~ 26-1) L2+ 2] |
1 <i<n} Then I =10,1/2] x [2,3] € B, C B, UPs, J = [0,1/3] 2,8/3] € P3 C P2 U Ps, but
(0,1/2) x (2,3) N (0,1/3) x (2,8/3) # (). Therefore, P, U Py is not a partition of K.

Definition (6). Let f be a bounded function defined on a closed n—cell K with values
in R. A Riemann sum Sp(f, K) corresponding to a partition P = {K;}7, of K is given

by Sp(f, K) Zf z;)c(K;), where x; is any point in K;, and ¢(K;) denotes the (n-dim’l)
content of K.
Remark. Note that ZmZ K;) = Lp(f) < Sp(f) = Sp(f,K) < Up(f ZM@ ), where

m; = 1nff < flxy) < M = supf and Lp(f), and Up(f) are called the lower sum and upper

sum, respectlvely, of f Wlth respect to the partition P of K.
Remark. (Monotonicity of lower and upper sums) If P, () are partitions of K, and P C @ i.e.
( is finer than P, then we have

Lp(f) < Lo(f) < So(f) < Uq(f) < Ur(f).

Since the set {Lp(f) | Pis a partition of K } is nonempty, and bounded from above by (supy f)c(K),

the L(f, K) = supp Lp(f) = sup{Lp(f) | Pis a partition of K'} exists.

Analogously, the U(f, K) = infp Up(f) = inf{Up(f) | Pis a partition of K'} exists.

If {P;} be any sequence of partitions of K such that P; C Py for each j = 1,2..., and ||FP;|| >

| Pj+1]] — 0, then . h|1|rn Lp,(f) = L(f, K), and . hﬁn Up (f)=U(f, K).

Definition (of integrability on cells). A bounded function f is called Riemann integrable on K

if L(f,K) = U(f, K) and this common value, denoted / f, is called the (Riemann) integral of
K

f on K.

Page 2



Advanced Calculus Handout 5 (Continued) April 25, 2011

Remark. f is integrable on K if and only if there exists a unique number L such that for each
partition P of K we have Lp(f) <L <Up(f)

Proof: (=) Since Lp(f) < L(f, K) = U(f, K) < Up(f) holds for each partition P of K, by setting
L = L(f, K), the inequality Lp(f) < L < Up(f) holds for each partition P of K. Suppose that
Ly is a number such that the inequality Lp(f) < L; < Up(f) holds for each partition P of K.
Then L, is an upper (resp. a lower) bound of the set {Lp(f) | Pis a partition of K'} (resp.
{Up(f) | Pis a partition of K }) which implies that L = L(f, K) < L; (resp. Ly < U(f,K) = L)).
Hence, Ly = L is the unique number such that the inequality Lp(f) < L < Up(f) holds for each
partition P of K.

(<) In order to show that L(f, K) = U(f, K), we show that L(f, K) = L, and U(f, K) = L. Since
the inequality Lp(f) < L < Up(f) holds for each partition P of K, we have L(f, K) = supp Lp(f) <
L <infpUp(f) =U(f,K). Suppose that L(f,K) < L (resp. L < U(f,K)), then J¢; > 0 such
that L(f,K) < L — ¢ (resp. L+ ¢y < U(f,K)). Thus, for each partition P of K, we have
Lp(f) < L(f, K) <L—-—¢<L< Up(f) (resp. Lp(f) <L<L+e¢< U(f, K) < Up(f)) which
contradicts to the uniqueness of L. This implies that L(f, K) = L (resp. U(f, K) = L), and
L(f,K)=L=U(f K),ie. fisintegrable on K.

Criterion of integrability: Let f be a bounded function defined on K. Then the following are
equivalent.

(1) f is integrable on K, i.e. L(f,K) = U(f, K), with integral L = [, f = L(f, K)

(2) (Riemann Criterion for Integrability) Ve > 0, 3 partition P, of K, such that if Pis a refinement
of P, then |Up(f) — Lp(f)| <e.

(3) (Cauchy Criterion for Integrability) Ve > 0, 3 partition P., of K, such that if P and @ are any
refinements of P, and Sp(f, K) and Sg(f, K) are any corresponding Riemann sums, then |Sp(f, K)—
Salf, K)| < e

(4) Ve > 0, 3 partition P, of K, such that if P is any refinement of P., and Sp(f, K) is any
corresponding Riemann sum, then |Sp(f, K) — L| < e.

Proof Since Lp(f) < L(f, K) < U(f, K) < Up(f) (by drawing a picture) one notes that

U(f, K) = L(f, K)| <O |Up(f) = Le(£)] <P [Up(f) = LI + [Lp(f) = LI.

(1) = (2) ;|| Given € > 0, since L(f, K) = U(f, K) (and by the definitions that L(f, K) being the

smallest number that satisfies L(f, K') > Lp(f), and U(f, K) being the largest number that satisfies
U(f,K) < Up(f) for all P), there exists a partition P, such that

L(va)_€/2<LPe(f) §L<f7K)7

and

L(f,K) = U(f, K) < Up(f) <U(f, K) +€/2 = L(f, K) + €¢/2.
Thus, if P is any refinement of P., then

L(f,K) —¢/2 < Lp.(f) < Lp(f) < Up(f) <Up.(f) < L(f, K) +¢/2.

Setting L = L(f, K) in the (second) inequality (}), we get that

[Up(f) = Le(NI < |Up(f) = LI+ |Lp(f) = Ll < €/2+€¢/2 =
Thus, the conclusion of (2) holds.
(2) = (1) : || For each € > 0, since the (first) inequality (%), and (2) hold, there exists a partition P,

such that if P is any refinement of P,, then
U(f, K) = L(f, K)| < |Up(f) = Le(f)| < e

Letting € — 0, we get
0 < lim [U(f.K) — L(f. K)| < lime = 0 = U(f. K) = L(f. K)

Page 3
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and f is integrable.

(2) < (3) :|| For any refinements P, @ of P., we have

Lp(f) < Lp(f) <Sp(f, K) < Up(
Lp (f) < Lo(f) < Sq(f, K) < Uq(f) < Ur.(f)

=
IN
5
S
S~—

Thus, we have
1Sp(f, K) = So(f, K)| < [Up.(f) — Lr.(f)]
and (2) = (3).
Conversely, for any refinements P, Q of P., if |Sp(f, K) — Sq(f, K)| < €/2 then, since

[Up(f) = Lo(f)] = sup [Sp(f, K) = So(f, K)I,

where the supremum is taken on all possible Riemann sum Sp(f, K) and Sg(f, K) corresponding to
the given (fixed) partitions P and @, respectively, we have

Up(f) = Lo(f)| < sup |Sp(f, K) = Sq(f, K)| < €/2

and (3) = (2).

(3) < (4) :|| Let {Q;} be a sequence of refinements of P, such that Q; C ;11 and lim ||Q;|| = 0.
j—o0

then

[Sp(f, K) — LI = lim |Sp(f, K) — Sq,(f, K)| < €
and (3) = (4). Conversely, since
’SP(fa K) o SQ(fa K)' < ’SP<f7 K) - L| + |SQ<f7K) - L’

holds, we have (4) = (3).

a ifzeQnio,1],

b ifzel0,1]\Q.

Then f is not continuous at each = € [a,b] and f is not integrable on [0, 1] since Lp(f,[0,1]) = a #

;0]

b= Up(f,[a,b]) for any partition P of [a, b]
1

S

Example (1). For a < b, let f(z) =

=~ ifr=2"cQnI0,1], wherem,n € N={1,2,...} and gcd(m,n) = 1,
1 ifz=0,

0 ifxzel0,1]\Q.

Then f is integrable on [0, 1] and f is continuous at every irrational and discontinuous at every ra-
tional.

Observations. (1) There are finitely many rational numbers £ € [0, 1] such that ¢ < n. In fact, for

fixed ¢ < n, the number of § € [0,1] is at most g + 1, which is at most n. Moreover, there are less

Example (2). Let f(x) =

than n positive ¢ such that ¢ < n. Thus, the set A, = {§ € [0,1] : ¢ < n} contains no more than
n? element and note that if 2 € (0,1) is in lowest terms (m and n have no common factors except
one), then min{[2 — 2| : 2 € 4,} > .

(2) Fix 2 <n €N, andlet]f’:{gztn%:q<n, geN, p=0,1,...,q— 1}. Since the set P is finite,
it yields a partition P = (15 N [0,1]) U {1} of [0,1]. Define a step function

{1 if3geN, pe{0,1,...,¢— 1} withg < nsuch that 2 — L <z < §+$,

sn(1) = . . @
0 if there do not exist such p and gq.

f(z) ifﬂqEN,pE{0,1,...,q—1}Withq<nsuchthat§—n—lg<x<§+$,

Also, define f,(z) =
0 if there do not exist such p and q.

Page 4
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For each n > 2, since A,, contains no more than n? elements, there exist no more than n? intervals
(82—, 2+ 1) in the interval [0, 1]. Thus, we have 0 < U(f,, [0,1]) < Up(fn,[0,1]) < Up(sy, [0,1]) =

q nd'gq

fol sn(x) < n*(%) = 2 for all n > 2. By letting n go to infinity, we get 0 = U(f,[0,1]) > L(f,[0,1]) =
0. This proves that f is integrable on [0, 1].

(3) Let = ™ be a rational number in lowest terms. Note that if y € [0,1] satisfying that
ly — x| < ﬁ = (2711)2 then either y € [0,1] \ Q or y = § with ¢ < 2n (since any § € Ay, will
have |z — £| > (Z}L)Q). Assume f is continuous at x. Given € = 5, there exists § > 0 such that if
y €1[0,1] and |y — x| < d then |f(z) — f(y)| < €. Let d = min{J, (2+)2} and note that if y € [0, 1] and
ly — x| < d then | f(z) — f(y)| > 5= (regardless that y is rational or irrational). This contradicts our
assumption.

(4) Let a € [0,1] \ Q. Given € > 0, choose n € N such that £ < e. Since there are finitely many

rational numbers § € [0,1] such that ¢ < n, the minimum distance § between § and « for g < n,

Le. 0 = min{la — 2| : ¢ < n}, exists and it is positive since a is irrational. If |z — a| < 4, then
either z € [0,1] \ Q, or x = g with p and ¢ having no common factors except one and ¢ > n, since
0<e ifre(a—d,a+0)\Q,

(%) zég e ifa= e (a—d,a+i).

Some basic properties of integrable functions on cells:

(1) Suppose that K, K;, K, are closed n—cells such that K = K; U K, and Int(K7) N Int(Ks) = (.
If f is integrable on K, then f is integrable on K7, and K>, and [, f = le f+ sz f

Proof. Given € > 0, since f is integrable, there is a partition P. of K such that if P is any refinement
of P, then |Up(f, K) — Lp(f,K)| <e. Fori=1,2,let P.; = P.N K;, then P,; is a partition of K;,
and P, ; U P, 5 is a refinement of P.. Thus, we have

|z — | < 0. Thus, we have |f(z) — f(a)] = {

€ > Up,up,(f, KiUKs) — Lp up.,(f, Ki UK>)

UPe,l (f? Kl) - LPe,l (f? Kl) + UP6,2<f7 K2) - LPe,Z(f? K2>
UPe,i(f7 Kl) - L-Pe,i<f7 Kl)

0

AVARAY

Thus, for each 1 =1, 2,
€ > UPe,i(f? KZ) - LPe,i(f’ Kl) >0

and if P; is any refinement of P, ;, then
€ > UPe,i(f? Kl) - LPe,i(fv KZ) > UPi(fJ KZ) - LPz‘(fa KZ) > 0.
This implies that f is Riemann integrable on K; and L; = | . J exists, for : = 1,2, and

L=L(f,K) = sup{Lp(f)| Pis any refinement of P,}

sup{Lp, (f) + Lp,(f) | P;is any refinement of P, ;1 = 1,2}
Ly + Lo

inf{Up,(f) + Up,(f) | P;is any refinement of P, ;i = 1,2}
inf{Up(f) | Pis any refinement of P, ; U P.»}
U(f,K)=1L

INIAIA

Thus, we have L = L{ + L.
(2) If f and g are integrable on K, then, for any ¢ € R, ¢f + g is integrable on K, and [,.(cf +g) =

¢l f+ Jx9

Proof. Given ¢ > 0, since f, g are integrable on K, there exists a partition P. of K such that if P is
any refinement of P, then

[Up(f) = Lp(f)] < €/2(1+|c])

Page 5
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and
\Up(9) — Lr(g)| < €/2.

Thus, we have
[Up(cf +g) — Le(cf + g)| < [cl|Up(f) = Le(f)| + |Up(g) — Lr(g)| < lcle/2(1 +|c]) +¢/2 <e

which implies that ¢f + ¢ is integrable on K. Let {P;} be a sequence of partitions of K satisfying
that P; C Pjyy forall j =1,2,..., and lim || P;|| = 0. Since
j—00

/f—thp (f, K) and/g—thp(g, K),
K

J—00 J—00

we have

c/f+/g = clim Sp,(f,K) + lim Sp,(g, K)
K K J—00

J—00

= lim Sp,/(cf, K) + lim Sp (g, K)
j—oo j—00

= hm SP](Cf_’_g’K)
J]—00

= /K(Cf+g)-

(3) Suppose that f and g are integrable on K. If f(z) < g(x) for each « € K, then [, f < [, g.
Proof. Since —f + g > 0 on K and, by (2), it is integrable on K, we have

OSLP(—HQ)S/K —f+g) = /f+/g,

where P is any partition of K. Since [ ~f € R, by adding | x J on both sides of the inequality, we
get [ [ < [x9

(4) If fis integrable on K, then |f| is integrable on K, and | [, f| < [ |f].

Proof. Given ¢ > 0, since f is integrable on K, there exists a partition P, of K such that if
P = {Kj}7., is any refinement of P, then

m

Up(LF)=Le(f DI =1 ( Sup\f!—mf!fl Z Sup f— inf f)e(K)| = [Up(f)=Lr(f)] <€
=1

Thus, |f| is integrable (by Riemann’s Criterion for integrability).

Since f, | f| are integrable, and £f < |f| on K, we have &+ [ f < [ |f| = | [ I < [ |-
Examples of integrability.

(1) Let Z C R™ have (n-)content zero, and f be a bounded function defined on Z. Then f is integrable
on Z, and [, f =0.

Proof. For each ¢ > 0, since Z has content zero, there exists a collection of cells {K;}™, such that
7 cUr K; = K, and zz LK )<6/2(supZ|f|+l) Define

- flz) ifzxeZ,
0 ifre K\Z

Then,

i@ z0 ez
|f|<x)_{0 itre K\ Z

Page 6
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and note that

su — inf = |sup f— inf f
!ijpzf ijzf! \Kﬂ%f ijzf\

< |sup f —inf f

< |ijf Kjfl

< |sup|fl—inf(—|f

< lsuplf] ~inf (= I7])

= |sup|f] — (—sup|f])]
K; K;

= 2sup|f] =2 sup |f]
Kj KjﬂZ

< 2M.

Thus, it P is any partition of K = U", K;, we have

Up(f.2) = Le(f, 2)| < 25up |f] D (k) <€

which implies that f is integrable on Z with [, f = 0.
(2) Let I be a closed interval in R, and f be a bounded and monotonic function defined on I = [a, b]

Then f is integrable on I.
Proof. Since f is bounded on I, L(f,I) = sup Lp(f) and U(f,I) = i%f Up(f) exist.
P

Let P, be the partition that divides I into 2" equal length subintervals. Thus,
lim Lp,(f) = L(f,I) and lim Up,(f) = U(f,I).

Since

Tim [Up, () — Le,(£)] = lim (£(b) — f(a)) (b~ a)/2" =0,

we get L(f,I)=U(f,I),1i.e. f is integrable on I.

(3) Let K be a closed n—cell, and f be a continuous function on K. Then f is integrable on K.
Proof. Since f is continuous on (compact set) K, f is uniformly continuous on K.

Hence, for any given € > 0 there exists 6 > 0 such that

if 2,y € K and ||z — y|| < & then |f(z) — f(y)] < ¢/(c(K) +1).
Let P. be a partition of K such that ||P,.|| = ax diam(K;) = Inax sup{||lz —y|| : z,y € K;} <.
je € je [3

If P is any refinement of P. then |Up(f) — Lp(f)| < ec(K)/(c(K) +1) <e.

Therefore, f is integrable on K.

(4) Let K be a closed n—cell, and f be a bounded function defined on K. If there exists a (n-)content
zero subset Z C K, such that f is continuous on K \ Z, i.e. f is continuous everywhere on K except
at a content zero subset Z of K, then f is integrable on K.

Proof. For each € > 0, since Z has content zero, there exists a collection of cells {I;}!_; such that

! !
Z C Int(UIi), IntZ; NIntl; = (), and ZC(IZ') < e/4(sup|f|+1).
i=1 i=1 K
!
Since K \ Int( U Ii) is compact, f is uniformly continuous there.
i=1
Thus, for the given € > 0, there exists a ¢ > 0 such that if

x,y € Kj\Int(U[l'), then |f(z) — f(y)| < ¢/2(c(K) +1).

=1
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Let P. = {K;}7., be a partition of K such that {LNKY._, Cc P.and | P.|| = max - sup |z —yl| <.
SJsm :L",yEKj
If P is any refinement of P, then, by using (1) and (3), we have

l

\Up(f) = Le(f)] < Z Supf— inf f) (1) + |Up(f, K\ Int( Uiy [;)) = Lp(f, K \ Int (Ui, L;))]

< 2sup\f|z K)e/2(c(K) +1)
< €

This implies that f is integrable on K.

Theorems: (1) Suppose f and g are integrable on a closed n—cell K, and f = g everywhere on K
except at a content zero subset Z of K, then fK f= fK qg.

Proof. Since f, g are integrable on K and Z has content zero, f — g is integrable on K and it is
continuous with value 0 on K \ Z. Given € > 0, let {I;}\_; be a collection of cells such that

!
ZCIntUi andz 1) < e/A( sup\f gl +1).
i=1

Let P, = {K;}", such that {I; N K}/_, C P.. Thus, if P is any refinement, of P. then

\Up(f —9) — Le(f —9g)] < ’UP<f_g>K\Int(UIi)) _LP<f_g>K\Int(UIi))’
+ D (sun(f = g) = jnf (f = g))e(T)
< €.

This implies that [,.(f —¢g) = 0. Since [, g € R, we have [, f = [, g.
(2) Fundamental Theorem of Calculus Let f be integrable on [a,b]. For each = € [a,b], let

x) = fa’x} f=[7 f(t)dt. Then F is continuous on [a, b]; moreover, F'(x) exists and equals f(z) at
every x at which f is continuous.
Remark. For each = € [a,b], the existence of F(x) is due to [a, x] C [a,b] and the existence of fab I
Existence of fab f implies that for each € > 0 3 a partition P. of [a, b] such that if P is any refinement
of P, then |Up(f,[a,b]) — Lp(f,[a,b])| <e.
Let

P'=P.N[a,z] and P’ = P.N [, D).

Then P'U PT is a refinement of P, and if P! is any refinement of P!, then

Upi(f,[a,2]) = Lpi(f, [, 2])] < |Upi(f,[a,2]) = Lp(f, |a, z]) + Upr (f, [2,0]) — Lp:(f, [2,0])]
= |UPElng“(f> [a,b]) — LPgng(fa [a, 0])]
< €.

Hence, f is integrable on [a, ], i.e. F(z) exists.

Proof of the Theorem. If z,y € [a,0] = F(y) = 7 f(

Let ¢ = sup{|f(t)| : t € [a,b]}. (c exists since f is 1ntegrable on [a b] = f is bounded on [a, b].)
Then |F(y) — F(z)| < | [} [f()ldt] < cf [, dt| = cly — x|

= F'is (Lipschitz, hence) continuous on [a, b].

Suppose that f is continuous at x; thus Ve > 0, 30 > 0 such that

if t € [a,b] and |t — x| < ¢ then |f(t) — f(z)] <e.
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Since f(x) = f(x) ;55 [} dt = 2 [ fx)dt

Hence, if y € [a,b] and |y — x| < = t € [a,b] and |t — x| < 0 for all ¢ between y and x.
= |f(t) — f(z)| < € and this implies that
Fy) — F
o (POZED gy < L 100 - st < e = e
. Fy) - Fz) . .
= lim ———— = f(z), i.e. F’ (x) exists and equals f(x) at every x at which f is continuous.
y—or Y —

(3) Let F' be a continuous function on [a, b] that is differentiable except at finitely many points in
[a,b], and let f be a function on [a,b] that agrees with F” at all points where F” is defined. If f is
integrable on [a, b], then fab f(t)dt = F(b) — F(a).

Proof. Let {z1,...,2zn} C [a,b] be the set at which F’ does not exist, i.e. F'is not differentiable at

zi,izl,...,m.

Let P={a=mzy <z <--- <x, =>b} be a partition of [a,b] with z;, i = 1,...,m, being partition
point, i.e. each z; € {xg,z1,...,2,}.

= F is continuous on each [z;_1,z,], j = 1,...,n, and differentiable on each (x;_1,x;).

By the Mean Value Theorem, F(x]) — F(zj_1) = F'(t;) (z; — xjo1) = f(t;) (z; — ;1) for some
tj € (xj_1,2;) and for each j = 1 , M.

Thus, we have F(b ZF xj) — F(xj_1) Zf — T 1)

= Lo(f,a,]) < F(b) — F(a) < Up(f, [a, 1)
= sup Lp({. [a, b)) < F() = F(a) < inf Up(1. [a, )

If f is integrable then fabf(t)dt =supp Lp(f,[a,b]) =infp Up(f,|a,b]) = F(b) — F(a).

‘Part 2: Integrable Functions on General Measurable Sets:‘

In the following we shall extend the concept of content of a cell in R” to more general mea-
surable subsets of R"” and extend the definition of integrability of a function to general subsets of
R™.

Definition (of integrability on general Euclidaen bounded subsets.) Let A C R" be a bounded set
and let f : A — R be a bounded function. Let K be a closed cell containing A and define fx : K — R

by
) flx) ifze A,
fK<x>_{o itr e K\ A

We say that f is integrable on A if fi is integrable on K, and define [, f = [, fx.
Remark. If A = K is a closed cell in R", then, since fx = f on K, it is obvious the integrability of
f on A agrees with the integrability of fx on K and [, f is defined to be [, fx.

Remark. Let I be any closed cell containing A. Then K N [ is a closed cell containing A =
fx = fxnr = fr everywhere in KNI, fxy =0on K\ (KNI),and f; =0 on I\ (K NI). Hence,
[ fx = [xny frnr = J; fr = the definition (of integrability of f) only depends on f and A (and it
is independent of the choice of K D A).

Basic properties of integrable functions on general sets:

(1). Let f and g be integrable functions defined on a bounded set A C R™ and let o, 5 € R. Then
the function o f + By is integrable on A and [,(af +8g9) =a [, f+ 06 [, 9.

Proof. For any partition P of a cell K O A, since Sp(afx + B9k, K) = aSp(fx, K) + 5Sp(gx, K)
when the same intermediate points z; are used, the function af + B¢ is integrable on A. Thus, by
choosing the intermediate points from A whenever it is possible, we obtain that Sp(af + fg, A) =
aSp(f,A) + BSp(g, A) which implies that [,(af+8g)=a [, f+ 5[, 9.

(2) Let A; and A, be bounded sets with no pints in common, and let f be a bounded function. If f
is integrable on A; and on A,, then f is integrable on A; U Ay and fAlqu f= fAl [+ fAz f
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flz) ifxe A UA,,

Proof. Let K be a closed cell containing both A; and A,, and let xr) =
& Lane A2 fi(@) {0 if € K\ (A U Ap)

| itz € A,
and fi(z) = {g(m) ifz i K\ A

on K and, since fx = fx + f#, and f is integrable on A; U A,. Also, for any partition P of K, note
that Sp(fr, K) = Sp(fk, K)+ Sp(f#, K) when the same intermediate points z; are used. Thus, we
have fAluAg f= fAl [+ fAQ f

(3) If f: A— R is integrable on (bounded set) A and f(z) > 0 for # € A, then [, f > 0.

Proof. For any closed cell K O A and any partition P of K, note that Sp(fx, K) > 0 for any
Riemann sum. Thus, fA f=>0.

Remark. This implies that if f and g are integrable on A and f(x) < g(z) for x € A, then (a)
Juf < [,9,and (b) |f] is integable on A, and | [, f| < [, |f].

(4) Let f : A — R be a bounded function and suppose that A has content zero. Then f is integrable
on Aand [, f=0.

Proof. LetK O A be a closed cell. If € > 0 is given, let P, be a partition of K such that those cells
in P, which contain points of A have total content less than e. Now if P is a refinement of P., then
those cells in P containing points of A will also have total content less than e. Hence if | f(z)| < M for
x € A, we have |Sp(fx, K)— 0| < Me for any Riemann sum corresponding to P. Since € is arbitrary,
this implies that [, f = 0.

(5) Let f,g: A — R be bounded functions and suppose that f is integrable on (bounded set) A. Let
Z C A have content zero and suppose that f(z) = g(z) for all z € A\ Z. Then g is integrable on A
and [, f=[,9

Proof. Extend f and g to functions fx, gx defined on a closed cell K O A. Thus, the function
hx = fx — gk is bounded and equals 0 except on Z. Hence, hy is integrable on K and fK hrg = 0.
Since fx is also integrable on K, we have [, f = [ fx = [ (fx —hK) = [ 95 = [, 9-

(6) Let U be a connected, open subset of R and let f: U C R® — R""! be a C* map on U. If K is
any convex, compact subset of U, then f(K') has measure (or content) zero.

Definition. Let A C R" be a bounded set. The characteristic function of A is the function y4
1 ifz e A,

0  otherwise.

function on R". Let K be a closed cell that contains A. We say that f is integrable on A if fya
is integrable on K, and define [, f = [, fxa. (Note that fxa =0 on K \ 4, so it is independent of
the choice of K D A.)

Question: Let f =1 on A C R". What does it mean when we say that f is integrable on A?
Definition. A set A C R" is said to have content (or it is said to be (Jordan) measurable)
if it is bounded and its boundary 0A has content zero. Let Z(R") (= {A C R™ | Ahas content } =
{A C R™ | Ais measurable }) denote the set of all measurable subsets of R™.

Remark. If A € P(R") and if K is a closed cell containing A, then the function gx defined

1 ifzeAd
b T) = is continuous on K except possibly at points of A (which has
y gk (x) 0 ifreK\A pt p y at p (

content zero). Thus, gk is integrable on K and we define the content of A, denoted c(A), by
C(A) IngK :fAl

Remark. Ve > 0, since ¢(A) = [ gk, Fa partition P, = {I;}, of K such that [Sp, (gk, K)—c(A)| <
¢ for any Riemann sum Sp,(gx, K). By choosing the intermediate points in Sp.(gx, K) to belong to
A whenever possible, we have > c¢(I;) + ¢ > Sp.(gr, K) + ¢ > c¢(A) > Sp.(gk, K) — ¢, where the
first inequality holds since A C U7, I;.

Thus, we have: A set A C R" has content zero if and only if A has content and [ a1 =
c(A) =0.

for i = 1,2. Since f is integrable on A;, i = 1,2, fi is integrable

defined by xa(x) = Now, suppose A is a bounded subset of R" and f is a bounded
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Acum I =K,
Z;'Ll c(l;) <e.
Since (i) K. is bounded = A is bounded, and (ii) K. is closed = 0A C K. = UJ,[; with
doiclly) <e=c(0A) =0

= A has content and ¢(A) = [, 1 = [, gx = 0since 0 < ¢(A) < Sp. (g, K)+e < 377", e(l;) +e < 2¢
and € is arbitrary.

(<) Suppose that A C R" has content and that ¢(A) = 0 = 3 a closed cell K containing A s.t.

] 1 ifzeA
the function gk (x) = .
0 ifzeK\A

of K s.t. any Riemann sum corresponding to P. satisfies that 0 < |Sp (g9, K) — ¢(A)| < e. Since
c(A) =0, we have 0 < Sp.(gk, K) < €. By taking the intermediate points in Sp (gx, K) to belong to
A whenever possible, we have A C U I; and Z c(l;) <e = c¢(A) =0.
1<j<m; [;NAZ£D 1<j<m; [;NA#D
Theorem. Let A € Z(R") and let f: A — R be integrable on A and such that |f(x)| < M for all
x € A. Then | [, f| < Mc(A). More generally, if f is real valued and m < f(z) < M for all z € A,
then (x) me(A) < [, f < Mc(A).
Proof. Let fx be the extension of f to a closed cell K containing A. If € > 0 is given, then there
exists a partition P, = {I;}}_, of K such that if Sp (fx, K) is any corresponding Riemann sum, then
Sp.(fx, K) —€ < [i fx < Sp.(fx, K) + €. We note that if the intermediate points of the Riemann
sum are chosen outside of A whenever possible, we have Sp, (fx, K) = > f(x;)c(I;), where the sum
is extended over those cells in P. entirely contained in A. Hence, Sp, (fx, K) < M Y. ¢(I;) < Mc(A).
Therefore, we have fA f= fK fr < Mc(A) + ¢, and since € > 0 is arbitrary we obtain the right side
of inequality (%). The left side is established in a similar manner.
Theorem. If A € Z(R") and ¢(A) > 0, then there exists a closed cell J C A such that ¢(J) # 0.
Mean Value Theorem. Let A € Z(R") be a connected set and let f : A — R be bounded and
continuous on A. Then there exists a point p € A such that [, f = f(p)c(A).
Proof. If ¢(A) = 0, the conclusion is trivial; hence we suppose that ¢(A) # 0. Let m = inf{f(x) : x €
A}, and M = sup{f(x) : © € A}; it follows from the preceding theorem that m < ﬁ o f <M If
both inequalities are strict, the results follows from Intermediate Value Theorem (since f is continu-
ous on A). Now suppose that [, f = Mc(A). If the supremum M is attained at p € A, the conclusion
also follows. Hence we assume that the supremum M is not attained on A. Since ¢(A) # 0, there
exists a closed cell J C A such that ¢(J) # 0 (prove this). Since J is compact and f is contin-
uous on J, there exists € > 0 such that f(z) < M — e for all z € J. Since A = JU (A\ J) we
have Mc(A) = [, f = [, [+ [o,f = (M —€)e(J) + Mc(A\ J) < Mc(A), a contradiction. If
[ f =mc(A), then a similar argument applies.
Mean Value Theorem for Riemann-Stieltjes Integrals. Let A € Z(R") be a connected set,
let f: A — R be bounded and continuous on A, and let g : A — R be bounded, nonnegative and
continuous on A, Then there exists a point p € A such that fA fa=f(p) fA qg.
Remark (Well-definedness of (Jordan) measurability) . Note that the definition for a set
having content (or the definition of a set being measurable) is well defined since the the following
properties hold.
Proposition. Let A, B € Z(R") and let x € R". Then
(1) AnB, AUB € 2(R") and ¢(A)+ C(B) = ¢(AN B) + ¢(AU B). Using induction, this concludes
l
that if A € Z(R™) and A is a finite disjoint union of measurable subsets, i.e. A = U B; and each
i=1

Proof. (=) Ve > 0, since A has content zero, 3 closed cells Iy, ..., I, s.t. {

is integrable on K. Ve > 0, let P. = {I;}J2, be a partition

I
B; € 2(R"), then c¢(A) = ZC(BZ').

(2) A\ B, B\ A € 2(R"). and c(AU B) = c(A\ B) + (AN B) + (B \ A).
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B)lfz+A={r+a|ac A} thenz+ A € Z(R") and ¢(x+ A) = ¢(A), i.e. the definition of content
is invariant under translations.

Proof. By using the definition of boundary points of a set, we have d(A N B), 9(A U B), 9(A \
B), 9(B\ A) C 0AUJIB. Thus, c¢(0(ANB)) = c(0(AU B)) = ¢(0(A\ B)) = c(d(B\ A)) =0 and
ANB, AUB, A\ B, B\ A € 2(R").

Now let K O AU B be a closed cell and let fa, fg, fans, faup be the functions equal to 1 on
A, B, AN B, AU B, respectively, and equal 0 elsewhere on K. Then they are integrable on K and ,

since fa + fg = fanp + faup, we have
¢(A) + e(B) = /K fat /K fs = /K (Fa+ fa) = /K (Fans + fav) = /K Fars + /K Favs
=c¢(ANB)+c¢(AUB).

To prove (3), note that if € > 0 is given and if .Jy, . .., J,, are cells with 0A C U J; and Z c(J;) < e,
i=1

=1
m

then  + Ji,...,x + Jp, are cells with d(z + A) C U(x + J;) and Zc(x + J;) < €. Since € > 0 is
i=1 i=1

arbitrary, the set  + A belongs to Z(R").

Let I be a closed cell containing A; hence x + I is a closed cell containing = + A. Let f; : I — R

be such that fi(y) =1 for y € A and fi(y) =0 fory € I\ A, and let fo : x + I — R be such that

fay) = lfory € v+ A and fi(y) =0fory € v+ I\ (z + A). Thus, we have fi(y) = fo(z +y) for

cachy € A, and ¢(A) = [, fi= [ ., fa = c(x + A).
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