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Let A ⊆ Rp and f be a function defined over A. To define
∫

A
f, the integral of f over A, it is

reasonable to require that

(a) the content (volume) of A is measurable, e.g. if A =

p∏
j=1

[aj, bj] is a closed cell in Rp, one can

define its content to be c(A) =

p∏
j=1

(bj − aj).

(b) the function f is summable, i.e. integrable, over A.
In the first part of this handout, we shall discuss how to define the integral of a function on cells in
Rp. In the second part of the handout, we shall extend the definition to a function on more general
(measurable) sets in Rp.

Part 1: Integrable Functions on Cells:

Definitions:
(a) K is called a cell in Rp (or a p−cell, or a p−dimensional rectangle) if K = I1 × · · · × Ip,

where Ij = [aj, bj] ⊂ R for j = 1, . . . , p.

(b) The (p−)content c(K) of K is defined to be c(K) = (b1 − a1)× · · · × (bp − ap) =

p∏
j=1

(bj − aj).

(c) A set Z ⊂ Rp has p−content zero if ∀ ε > 0, ∃ a finite set C = {Kj}m
j=1 of p−cells such that

(a) Z ⊂
m⋃

j=1

Kj,

(b)
m∑

j=1

c(Kj) < ε.

Remark 1. Note that the definition implies that if K is a cell (not necessarily closed) in Rp, then
the boundary ∂K of K is a set of p−content zero.
Remark 2. Note that the definition of the content for a cell is well defined since it is easy to see
that the following properties are satisfied.

(a) Let K be a cell in Rp) and K is a finite disjoint union of cells in Rp), i.e. K =
l⋃

i=1

Ki, then

c(K) =
l∑

i=1

c(Ki).

(b) Let K1, K2 be cells in Rp). Then c(K1 ∪K2) = c(K1 \K2) + c(K1 ∩K2) + c(K2 \K1).

(c) Let x ∈ Rp, K be a cell in Rp) and x + K = {x + z | z ∈ K}. Then x + K is a cell in Rp) with
c(x + K) = c(K), i.e. the definition of content for cells is invariant under translations.

Remark 3. By taking ε/2 > 0, if it is necessary, one may also assume that Z ⊂ Int
( m⋃

j=1

Kj

)
.

Example (1). Let Z = {xj ∈ R | lim
j→∞

xj = x}, a (0-dim’l) subset of R. Then (1 − dim’l) c(Z) = 0

since ∀ε > 0, ∃ a 1-d cell Kx such that x ∈ Int(Kx), c(Kx) < ε/2, and xj ∈ Kx ∀j ≥ L. For each
j = 1, . . . , L− 1, let Kj be a 1-d cell such that xj ∈ Kj, and c(Kj) ≤ ε/(2L).
Example (2). Let Z = Q ∩ [0, 1], a (0-dim’l) subset of R. Then (1-dim’l) c(Z) 6= 0 since any finite
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collection C = {K1, . . . , Km} of 1−dimensional cells that satisfies (a) will have
m∑

j=1

c(Kj) ≥ 1.

Example (3). Let Z = {(x, y) | |x| + |y| = 1}, a (1-dim’l) subset of R2. Then the (2-d) content
c(Z) = 0.
Definition (4). A collection of sets C = {Kj}m

j=1 in Rn is called a partition of a set K in Rn if

(a)
m⋃

i=1

Ki = K, and

(b) IntKi ∩ IntKj = ∅ holds for each 1 ≤ i 6= j ≤ m.
Example. Let K = [a1, b1] × · · · × [an, bn] = I1 × · · · × In, and Pj = {[xj

i , x
j
i+1] | aj = xj

0 < · · · <

xj
m(j) = bj}, for j = 1, . . . , n, be a partition of Ij into m(j) (a finite number of) closed cells in R.

Then the set P = {∏n
j=1[x

j
ij
, xj

ij+1] | 0 ≤ ij ≤ m(j) − 1} (induced by Pj’s) partitions K into
m(1)× · · · ×m(n) (finite number of) parallel closed n-cells.

Example. Let K = [0, 1]×[2, 4] ⊂ R2, and for each n = 1, 2, . . . , let Pn = {[ i−1
n

, i
n
]×[2+ 2(i−1)

n
, 2+ 2i

n
] |

1 ≤ i ≤ n} be a partition of K that divides each side of K into n equal length subintervals. One
can define the norm of a partition Pn to be the ‖Pn‖ = max

Kj∈Pn

diam(Kj). In this example, the norm

of the partition is ‖Pn‖ =
√

5
n

.
Definition(5). Let P = {Ii}l

i=1 and Q = {Kj}m
j=1 be partitions of (an n-cell) K. We say that P is

a refinement of Q, denoted Q ⊂ P, if each cell in P is contained in some cell in Q, i.e. for
each Ii ∈ P ∃Kj ∈ Q such that Ii ⊂ Kj.
Note that if P , Q are partitions of K, then P ∩Q is a (common) refinement of P and Q, and,
in general, P ∪Q is Not a partition,
Example. Let K = [0, 1]×[2, 4] ⊂ R2, and for each n = 1, 2, . . . , let Pn = {[ i−1

n
, i

n
]×[2+ 2(i−1)

n
, 2+ 2i

n
] |

1 ≤ i ≤ n}. Then I = [0, 1/2] × [2, 3] ∈ P2 ⊂ P2 ∪ P3, J = [0, 1/3] × [2, 8/3] ∈ P3 ⊂ P2 ∪ P3, but
(0, 1/2)× (2, 3) ∩ (0, 1/3)× (2, 8/3) 6= ∅. Therefore, P2 ∪ P3 is not a partition of K.
Definition (6). Let f be a bounded function defined on a closed n−cell K with values
in R. A Riemann sum SP (f, K) corresponding to a partition P = {Kj}m

j=1 of K is given

by SP (f, K) =
m∑

i=1

f(xi)c(Ki), where xi is any point in Ki, and c(Ki) denotes the (n-dim’l)

content of Ki.

Remark. Note that
m∑

i=1

mic(Ki) = LP (f) ≤ SP (f) = SP (f, K) ≤ UP (f) =
m∑

i=1

Mic(Ki), where

mi = inf
Ki

f ≤ f(xi) ≤ Mi = sup
Ki

f, and LP (f), and UP (f) are called the lower sum and upper

sum, respectively, of f with respect to the partition P of K.
Remark. (Monotonicity of lower and upper sums) If P, Q are partitions of K, and P ⊂ Q i.e.
Q is finer than P, then we have

LP (f) ≤ LQ(f) ≤ SQ(f) ≤ UQ(f) ≤ UP (f).

Since the set {LP (f) | P is a partition of K} is nonempty, and bounded from above by
(
supK f

)
c(K),

the L(f,K) = supP LP (f) = sup{LP (f) | P is a partition of K} exists.
Analogously, the U(f, K) = infP UP (f) = inf{UP (f) | P is a partition of K} exists.
If {Pk} be any sequence of partitions of K such that Pj ⊂ Pj+1 for each j = 1, 2 . . . , and ‖Pj‖ ≥
‖Pj+1‖ → 0, then lim

‖Pj‖→0
LPj

(f) = L(f, K), and lim
‖Pj‖→0

UPj
(f) = U(f,K).

Definition (of integrability on cells). A bounded function f is called Riemann integrable on K

if L(f,K) = U(f, K) and this common value, denoted

∫

K

f, is called the (Riemann) integral of

f on K.
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Remark. f is integrable on K if and only if there exists a unique number L such that for each
partition P of K we have LP (f) ≤ L ≤ UP (f)
Proof: (⇒) Since LP (f) ≤ L(f, K) = U(f,K) ≤ UP (f) holds for each partition P of K, by setting
L = L(f, K), the inequality LP (f) ≤ L ≤ UP (f) holds for each partition P of K. Suppose that
L1 is a number such that the inequality LP (f) ≤ L1 ≤ UP (f) holds for each partition P of K.
Then L1 is an upper (resp. a lower) bound of the set {LP (f) | P is a partition ofK} (resp.
{UP (f) | P is a partition of K}) which implies that L = L(f, K) ≤ L1 (resp. L1 ≤ U(f, K) = L)).
Hence, L1 = L is the unique number such that the inequality LP (f) ≤ L ≤ UP (f) holds for each
partition P of K.
(⇐) In order to show that L(f, K) = U(f, K), we show that L(f, K) = L, and U(f,K) = L. Since
the inequality LP (f) ≤ L ≤ UP (f) holds for each partition P of K, we have L(f, K) = supP LP (f) ≤
L ≤ infP UP (f) = U(f, K). Suppose that L(f,K) < L (resp. L < U(f, K)), then ∃ ε0 > 0 such
that L(f, K) < L − ε0 (resp. L + ε0 < U(f, K)). Thus, for each partition P of K, we have
LP (f) ≤ L(f, K) < L − ε0 < L ≤ UP (f) (resp. LP (f) ≤ L < L + ε0 < U(f, K) ≤ UP (f)) which
contradicts to the uniqueness of L. This implies that L(f, K) = L (resp. U(f,K) = L), and
L(f, K) = L = U(f,K), i.e. f is integrable on K.
Criterion of integrability: Let f be a bounded function defined on K. Then the following are
equivalent.
(1) f is integrable on K, i.e. L(f, K) = U(f, K), with integral L =

∫
K

f = L(f,K)
(2) (Riemann Criterion for Integrability) ∀ ε > 0, ∃ partition Pε, of K, such that if P is a refinement
of Pε, then |UP (f)− LP (f)| < ε.
(3) (Cauchy Criterion for Integrability) ∀ ε > 0, ∃ partition Pε, of K, such that if P and Q are any
refinements of Pε, and SP (f,K) and SQ(f, K) are any corresponding Riemann sums, then |SP (f, K)−
SQ(f, K)| < ε.
(4) ∀ ε > 0, ∃ partition Pε, of K, such that if P is any refinement of Pε, and SP (f,K) is any
corresponding Riemann sum, then |SP (f, K)− L| < ε.
Proof Since LP (f) ≤ L(f, K) ≤ U(f,K) ≤ UP (f), (by drawing a picture) one notes that
|U(f, K)− L(f,K)| ≤(∗) |UP (f)− LP (f)| ≤(†) |UP (f)− L|+ |LP (f)− L|.
(1) ⇒ (2) : Given ε > 0, since L(f, K) = U(f, K) (and by the definitions that L(f,K) being the

smallest number that satisfies L(f, K) ≥ LP (f), and U(f,K) being the largest number that satisfies
U(f, K) ≤ UP (f) for all P ), there exists a partition Pε such that

L(f, K)− ε/2 < LPε(f) ≤ L(f, K),

and
L(f,K) = U(f, K) ≤ UPε(f) < U(f,K) + ε/2 = L(f,K) + ε/2.

Thus, if P is any refinement of Pε, then

L(f,K)− ε/2 < LPε(f) ≤ LP (f) ≤ UP (f) ≤ UPε(f) < L(f, K) + ε/2.

Setting L = L(f, K) in the (second) inequality (†), we get that

|UP (f)− LP (f)| ≤ |UP (f)− L|+ |LP (f)− L| < ε/2 + ε/2 = ε.

Thus, the conclusion of (2) holds.

(2) ⇒ (1) : For each ε > 0, since the (first) inequality (∗), and (2) hold, there exists a partition Pε

such that if P is any refinement of Pε, then

|U(f, K)− L(f,K)| ≤ |UP (f)− LP (f)| < ε.

Letting ε → 0, we get

0 ≤ lim
ε→0

|U(f, K)− L(f,K)| ≤ lim
ε→0

ε = 0 ⇒ U(f,K) = L(f,K)

Page 3



Advanced Calculus Handout 5 (Continued) April 25, 2011

and f is integrable.

(2) ⇔ (3) : For any refinements P,Q of Pε, we have

LPε(f) ≤ LP (f) ≤ SP (f,K) ≤ UP (f) ≤ UPε(f)

LPε(f) ≤ LQ(f) ≤ SQ(f, K) ≤ UQ(f) ≤ UPε(f)

Thus, we have
|SP (f,K)− SQ(f, K)| ≤ |UPε(f)− LPε(f)|

and (2) ⇒ (3).
Conversely, for any refinements P,Q of Pε, if |SP (f, K)− SQ(f,K)| < ε/2 then, since

|UP (f)− LQ(f)| = sup |SP (f,K)− SQ(f, K)|,

where the supremum is taken on all possible Riemann sum SP (f,K) and SQ(f,K) corresponding to
the given (fixed) partitions P and Q, respectively, we have

|UP (f)− LQ(f)| ≤ sup |SP (f,K)− SQ(f, K)| ≤ ε/2

and (3) ⇒ (2).

(3) ⇔ (4) : Let {Qj} be a sequence of refinements of Pε such that Qj ⊂ Qj+1 and lim
j→∞

‖Qj‖ = 0.

then
|SP (f, K)− L| = lim

j→∞
|SP (f, K)− SQj

(f, K)| ≤ ε

and (3) ⇒ (4). Conversely, since

|SP (f,K)− SQ(f, K)| ≤ |SP (f,K)− L|+ |SQ(f, K)− L|

holds, we have (4) ⇒ (3).

Example (1). For a < b, let f(x) =

{
a if x ∈ Q ∩ [0, 1],

b if x ∈ [0, 1] \Q.

Then f is not continuous at each x ∈ [a, b] and f is not integrable on [0, 1] since LP (f, [0, 1]) = a 6=
b = UP (f, [a, b]) for any partition P of [a, b].

Example (2). Let f(x) =





1
n

if x = m
n
∈ Q ∩ [0, 1], where m,n ∈ N = {1, 2, . . .} and gcd(m, n) = 1,

1 if x = 0,

0 if x ∈ [0, 1] \Q.

Then f is integrable on [0, 1] and f is continuous at every irrational and discontinuous at every ra-
tional.
Observations. (1) There are finitely many rational numbers p

q
∈ [0, 1] such that q < n. In fact, for

fixed q < n, the number of p
q
∈ [0, 1] is at most q + 1, which is at most n. Moreover, there are less

than n positive q such that q < n. Thus, the set An = {p
q
∈ [0, 1] : q < n} contains no more than

n2 element and note that if m
n
∈ (0, 1) is in lowest terms (m and n have no common factors except

one), then min{|p
q
− m

n
| : p

q
∈ An} > 1

n2 .

(2) Fix 2 ≤ n ∈ N, and let P̂ = {p
q
± 1

n3 : q < n, q ∈ N, p = 0, 1, . . . , q − 1}. Since the set P̂ is finite,

it yields a partition P =
(
P̂ ∩ [0, 1]

) ∪ {1} of [0, 1]. Define a step function

sn(x) =

{
1 if ∃ q ∈ N, p ∈ {0, 1, . . . , q − 1}with q < n such that p

q
− 1

n3 < x < p
q

+ 1
n3 ,

0 if there do not exist such p and q.

Also, define fn(x) =

{
f(x) if ∃ q ∈ N, p ∈ {0, 1, . . . , q − 1}with q < n such that p

q
− 1

n3 < x < p
q

+ 1
n3 ,

0 if there do not exist such p and q.
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For each n ≥ 2, since An contains no more than n2 elements, there exist no more than n2 intervals
(p

q
− 1

n3 ,
p
q
+ 1

n3 ) in the interval [0, 1]. Thus, we have 0 ≤ U(fn, [0, 1]) ≤ UP (fn, [0, 1]) ≤ UP (sn, [0, 1]) =∫ 1

0
sn(x) ≤ n2

(
2
n3

)
= 2

n
for all n ≥ 2. By letting n go to infinity, we get 0 = U(f, [0, 1]) ≥ L(f, [0, 1]) =

0. This proves that f is integrable on [0, 1].
(3) Let x = m

n
be a rational number in lowest terms. Note that if y ∈ [0, 1] satisfying that

|y − x| < 1
4n2 = 1

(2n)2
then either y ∈ [0, 1] \ Q or y = p

q
with q < 2n (since any p

q
∈ A2n will

have |x − p
q
| ≥ 1

(2n)2
). Assume f is continuous at x. Given ε = 1

2n
, there exists δ > 0 such that if

y ∈ [0, 1] and |y− x| < δ then |f(x)− f(y)| < ε. Let d = min{δ, 1
(2n)2

} and note that if y ∈ [0, 1] and

|y − x| < d then |f(x)− f(y)| > 1
2n

(regardless that y is rational or irrational). This contradicts our
assumption.
(4) Let α ∈ [0, 1] \ Q. Given ε > 0, choose n ∈ N such that 1

n
< ε. Since there are finitely many

rational numbers p
q
∈ [0, 1] such that q < n, the minimum distance δ between p

q
and α for q < n,

i.e. δ = min{|α − p
q
| : q < n}, exists and it is positive since α is irrational. If |x − α| < δ, then

either x ∈ [0, 1] \ Q, or x = p
q

with p and q having no common factors except one and q ≥ n, since

|x− α| < δ. Thus, we have |f(x)− f(α)| =
{

0 < ε if x ∈ (α− δ, α + δ) \Q,

|f(p
q
)| = 1

q
≤ 1

n
< ε if x = p

q
∈ (α− δ, α + δ).

Some basic properties of integrable functions on cells:
(1) Suppose that K, K1, K2 are closed n−cells such that K = K1 ∪K2, and Int(K1) ∩ Int(K2) = ∅.
If f is integrable on K, then f is integrable on K1, and K2, and

∫
K

f =
∫

K1
f +

∫
K2

f.
Proof. Given ε > 0, since f is integrable, there is a partition Pε of K such that if P is any refinement
of Pε, then |UP (f,K)− LP (f, K)| < ε. For i = 1, 2, let Pε,i = Pε ∩Ki, then Pε,i is a partition of Ki,
and Pε,1 ∪ Pε,2 is a refinement of Pε. Thus, we have

ε > UPε,1∪Pε,2(f, K1 ∪K2)− LPε,1∪Pε,2(f, K1 ∪K2)

= UPε,1(f,K1)− LPε,1(f, K1) + UPε,2(f, K2)− LPε,2(f, K2)

≥ UPε,i
(f,Ki)− LPε,i

(f, Ki)

≥ 0

Thus, for each i = 1, 2,
ε > UPε,i

(f, Ki)− LPε,i
(f,Ki) ≥ 0

and if Pi is any refinement of Pε,i, then

ε > UPε,i
(f, Ki)− LPε,i

(f, Ki) ≥ UPi
(f,Ki)− LPi

(f, Ki) ≥ 0.

This implies that f is Riemann integrable on Ki and Li =
∫

Ki
f exists, for i = 1, 2, and

L = L(f, K) = sup{LP (f) | P is any refinement of Pε}
≤ sup{LP1(f) + LP2(f) | Pi is any refinement of Pε,i i = 1, 2}
≤ L1 + L2

≤ inf{UP1(f) + UP2(f) | Pi is any refinement of Pε,i i = 1, 2}
= inf{UP (f) | P is any refinement of Pε,1 ∪ Pε,2}
= U(f,K) = L

Thus, we have L = L1 + L2.
(2) If f and g are integrable on K, then, for any c ∈ R, cf + g is integrable on K, and

∫
K

(cf + g) =
c
∫

K
f +

∫
K

g.
Proof. Given ε > 0, since f, g are integrable on K, there exists a partition Pε of K such that if P is
any refinement of Pε then

|UP (f)− LP (f)| < ε/2(1 + |c|)
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and
|UP (g)− LP (g)| < ε/2.

Thus, we have

|UP (cf + g)− LP (cf + g)| ≤ |c||UP (f)− LP (f)|+ |UP (g)− LP (g)| < |c|ε/2(1 + |c|) + ε/2 < ε

which implies that cf + g is integrable on K. Let {Pj} be a sequence of partitions of K satisfying
that Pj ⊂ Pj+1 for all j = 1, 2, . . ., and lim

j→∞
‖Pj‖ = 0. Since

∫

K

f = lim
j→∞

SPj
(f,K) and

∫

K

g = lim
j→∞

SPj
(g,K),

we have

c

∫

K

f +

∫

K

g = c lim
j→∞

SPj
(f, K) + lim

j→∞
SPj

(g,K)

= lim
j→∞

SPj
(cf, K) + lim

j→∞
SPj

(g, K)

= lim
j→∞

SPj
(cf + g, K)

=

∫

K

(cf + g).

(3) Suppose that f and g are integrable on K. If f(x) ≤ g(x) for each x ∈ K, then
∫

K
f ≤ ∫

K
g.

Proof. Since −f + g ≥ 0 on K and, by (2), it is integrable on K, we have

0 ≤ LP (−f + g) ≤
∫

K

(−f + g) = −
∫

K

f +

∫

K

g,

where P is any partition of K. Since
∫

K
f ∈ R, by adding

∫
K

f on both sides of the inequality, we
get

∫
K

f ≤ ∫
K

g.
(4) If f is integrable on K, then |f | is integrable on K, and | ∫

K
f | ≤ ∫

K
|f |.

Proof. Given ε > 0, since f is integrable on K, there exists a partition Pε of K such that if
P = {Kj}m

j=1 is any refinement of Pε then

|UP (|f |)−LP (|f |)| = |
m∑

i=1

(
sup
Ki

|f |−inf
Ki

|f |)c(Ki)| ≤ |
m∑

i=1

(
sup
Ki

f−inf
Ki

f
)
c(Ki)| = |UP (f)−LP (f)| < ε.

Thus, |f | is integrable (by Riemann’s Criterion for integrability).
Since ±f, |f | are integrable, and ±f ≤ |f | on K, we have ± ∫

K
f ≤ ∫

K
|f | ⇒ | ∫

K
f | ≤ ∫

K
|f |.

Examples of integrability.
(1) Let Z ⊂ Rn have (n-)content zero, and f be a bounded function defined on Z. Then f is integrable
on Z, and

∫
Z

f = 0.
Proof. For each ε > 0, since Z has content zero, there exists a collection of cells {Ki}m

i=1 such that
Z ⊂ ∪m

i=1Ki = K, and
∑m

i=1 c(Ki) < ε/2
(
supZ |f |+ 1

)
. Define

f̄(x) =

{
f(x) if x ∈ Z,

0 if x ∈ K \ Z.

Then,

|f̄ |(x) =

{
|f |(x) ≥ 0 if x ∈ Z,

0 if x ∈ K \ Z,
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and note that

| sup
Kj∩Z

f − inf
Kj∩Z

f | = | sup
Kj∩Z

f̄ − inf
Kj∩Z

f̄ |

≤ | sup
Kj

f̄ − inf
Kj

f̄ |

≤ | sup
Kj

|f̄ | − inf
Kj

(− |f̄ |)|

= | sup
Kj

|f̄ | − (− sup
Kj

|f̄ |)|

= 2 sup
Kj

|f̄ | = 2 sup
Kj∩Z

|f |

≤ 2M.

Thus, if P is any partition of K = ∪m
i=1Ki, we have

|UP (f, Z)− LP (f, Z)| ≤ 2 sup
Z
|f |

m∑
i=1

c(Ki) < ε

which implies that f is integrable on Z with
∫

Z
f = 0.

(2) Let I be a closed interval in R, and f be a bounded and monotonic function defined on I = [a, b]
Then f is integrable on I.
Proof. Since f is bounded on I, L(f, I) = sup

P
LP (f) and U(f, I) = inf

P
UP (f) exist.

Let Pn be the partition that divides I into 2n equal length subintervals. Thus,

lim
n→∞

LPn(f) = L(f, I) and lim
n→∞

UPn(f) = U(f, I).

Since
lim

n→∞
|UPn(f)− LPn(f)| = lim

n→∞
(
f(b)− f(a)

)(
b− a

)
/2n = 0,

we get L(f, I) = U(f, I), i.e. f is integrable on I.
(3) Let K be a closed n−cell, and f be a continuous function on K. Then f is integrable on K.
Proof. Since f is continuous on (compact set) K, f is uniformly continuous on K.
Hence, for any given ε > 0 there exists δ > 0 such that

if x, y ∈ K and ‖x− y‖ < δ then |f(x)− f(y)| < ε/
(
c(K) + 1

)
.

Let Pε be a partition of K such that ‖Pε‖ = max
Kj∈Pε

diam(Kj) = max
Kj∈Pε

sup{‖x− y‖ : x, y ∈ Kj} < δ.

If P is any refinement of Pε then |UP (f)− LP (f)| < εc(K)/
(
c(K) + 1

)
< ε.

Therefore, f is integrable on K.
(4) Let K be a closed n−cell, and f be a bounded function defined on K. If there exists a (n-)content
zero subset Z ⊂ K, such that f is continuous on K \Z, i.e. f is continuous everywhere on K except
at a content zero subset Z of K, then f is integrable on K.
Proof. For each ε > 0, since Z has content zero, there exists a collection of cells {Ii}l

i=1 such that

Z ⊂ Int
( l⋃

i=1

Ii

)
, IntIi ∩ IntIj = ∅, and

l∑
i=1

c(Ii) < ε/4
(
sup
K
|f |+ 1

)
.

Since K \ Int
( l⋃

i=1

Ii

)
is compact, f is uniformly continuous there.

Thus, for the given ε > 0, there exists a δ > 0 such that if

x, y ∈ Kj \ Int
( l⋃

i=1

Ii

)
, then |f(x)− f(y)| < ε/2

(
c(K) + 1

)
.

Page 7



Advanced Calculus Handout 5 (Continued) April 25, 2011

Let Pε = {Kj}m
j=1 be a partition of K such that {Ii∩K}l

i=1 ⊂ Pε and ‖Pε‖ = max
1≤j≤m

sup
x,y∈Kj

‖x−y‖ < δ.

If P is any refinement of Pε then, by using (1) and (3), we have

|UP (f)− LP (f)| ≤
l∑

i=1

(
sup
Z∩Ii

f − inf
Z∩Ii

f
)
c(Ii) + |UP (f,K \ Int

( ∪l
i=1 Ii

)
)− LP (f, K \ Int

( ∪l
i=1 Ii

)
)|

≤ 2 sup
Z
|f |

l∑
i=1

c(Ii) + c(K)ε/2
(
c(K) + 1

)

< ε

This implies that f is integrable on K.
Theorems: (1) Suppose f and g are integrable on a closed n−cell K, and f = g everywhere on K
except at a content zero subset Z of K, then

∫
K

f =
∫

K
g.

Proof. Since f, g are integrable on K and Z has content zero, f − g is integrable on K and it is
continuous with value 0 on K \ Z. Given ε > 0, let {Ii}l

i=1 be a collection of cells such that

Z ⊂ Int
( l⋃

i=1

Ii

)
and

l∑
i=1

c(Ii) < ε/4
(
sup
K
|f − g|+ 1

)
.

Let Pε = {Kj}m
j=1 such that {Ii ∩K}l

i=1 ⊂ Pε. Thus, if P is any refinement of Pε then

|UP (f − g)− LP (f − g)| ≤ |UP (f − g, K \ Int
( l⋃

i=1

Ii

)
)− LP (f − g,K \ Int

( l⋃
i=1

Ii

)
)|

+
l∑

i=1

(
sup
Z∩Ii

(f − g)− inf
Z∩Ii

(f − g)
)
c(Ii)

< ε.

This implies that
∫

K
(f − g) = 0. Since

∫
K

g ∈ R, we have
∫

K
f =

∫
K

g.
(2) Fundamental Theorem of Calculus Let f be integrable on [a, b]. For each x ∈ [a, b], let
F (x) =

∫
a,x]

f =
∫ x

a
f(t)dt. Then F is continuous on [a, b]; moreover, F ′(x) exists and equals f(x) at

every x at which f is continuous.
Remark. For each x ∈ [a, b], the existence of F (x) is due to [a, x] ⊆ [a, b] and the existence of

∫ b

a
f.

Existence of
∫ b

a
f implies that for each ε > 0 ∃ a partition Pε of [a, b] such that if P is any refinement

of Pε, then |UP (f, [a, b])− LP (f, [a, b])| < ε.
Let

P l
ε = Pε ∩ [a, x] and P r

ε = Pε ∩ [x, b].

Then P l
ε ∪ P r

ε is a refinement of Pε and if P l is any refinement of P l
ε , then

|UP l
ε
(f, [a, x])− LP l

ε
(f, [a, x])| ≤ |UP l

ε
(f, [a, x])− LP l

ε
(f, [a, x]) + UP r

ε
(f, [x, b])− LP r

ε
(f, [x, b])|

= |UP l
ε∪P r

ε
(f, [a, b])− LP l

ε∪P r
ε
(f, [a, b])|

< ε.

Hence, f is integrable on [a, x], i.e. F (x) exists.
Proof of the Theorem. If x, y ∈ [a, b] ⇒ F (y)− F (x) =

∫ y

x
f(t)dt.

Let c = sup{|f(t)| : t ∈ [a, b]}. (c exists since f is integrable on [a, b] ⇒ f is bounded on [a, b].)
Then |F (y)− F (x)| ≤ | ∫ y

x
|f(t)|dt| ≤ c| ∫ y

x
dt| = c|y − x|

⇒ F is (Lipschitz, hence) continuous on [a, b].
Suppose that f is continuous at x; thus ∀ ε > 0, ∃ δ > 0 such that
if t ∈ [a, b] and |t− x| < δ then |f(t)− f(x)| < ε.
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Since f(x) = f(x) 1
y−x

∫ y

x
dt = 1

y−x

∫ y

x
f(x)dt.

Hence, if y ∈ [a, b] and |y − x| < δ ⇒ t ∈ [a, b] and |t− x| < δ for all t between y and x.
⇒ |f(t)− f(x)| < ε and this implies that

⇒ |F (y)− F (x)

y − x
− f(x)| ≤ 1

|y − x| |
∫ y

x
|f(t)− f(x)|dt| ≤ 1

|y − x| |
∫ y

x
εdt| = ε.

⇒ lim
y→x

F (y)− F (x)

y − x
= f(x), i.e. F ′(x) exists and equals f(x) at every x at which f is continuous.

(3) Let F be a continuous function on [a, b] that is differentiable except at finitely many points in
[a, b], and let f be a function on [a, b] that agrees with F ′ at all points where F ′ is defined. If f is

integrable on [a, b], then
∫ b

a
f(t)dt = F (b)− F (a).

Proof. Let {z1, . . . , zm} ⊂ [a, b] be the set at which F ′ does not exist, i.e. F is not differentiable at
zi, i = 1, . . . ,m.
Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b] with zi, i = 1, . . . , m, being partition
point, i.e. each zi ∈ {x0, x1, . . . , xn}.
⇒ F is continuous on each [xj−1, xj], j = 1, . . . , n, and differentiable on each (xj−1, xj).
By the Mean Value Theorem, F (xj) − F (xj−1) = F ′(tj) (xj − xj−1) = f(tj) (xj − xj−1) for some
tj ∈ (xj−1, xj) and for each j = 1, . . . , n.

Thus, we have F (b)− F (a) =
n∑

j=1

F (xj)− F (xj−1) =
n∑

j=1

f(tj) (xj − xj−1)

⇒ LP (f, [a, b]) ≤ F (b)− F (a) ≤ UP (f, [a, b])
⇒ sup

P
LP (f, [a, b]) ≤ F (b)− F (a) ≤ inf

P
UP (f, [a, b])

If f is integrable then
∫ b

a
f(t)dt = supP LP (f, [a, b]) = infP UP (f, [a, b]) = F (b)− F (a).

Part 2: Integrable Functions on General Measurable Sets:

In the following we shall extend the concept of content of a cell in Rn to more general mea-
surable subsets of Rn and extend the definition of integrability of a function to general subsets of
Rn.
Definition (of integrability on general Euclidaen bounded subsets.) Let A ⊂ Rn be a bounded set
and let f : A → R be a bounded function. Let K be a closed cell containing A and define fK : K → R
by

fK(x) =

{
f(x) if x ∈ A,

0 if x ∈ K \ A.

We say that f is integrable on A if fK is integrable on K, and define
∫

A
f =

∫
K

fK .
Remark. If A = K is a closed cell in Rn, then, since fK = f on K, it is obvious the integrability of
f on A agrees with the integrability of fK on K and

∫
A

f is defined to be
∫

K
fK .

Remark. Let I be any closed cell containing A. Then K ∩ I is a closed cell containing A ⇒
fK = fK∩I = fI everywhere in K ∩ I, fK = 0 on K \ (K ∩ I), and fI = 0 on I \ (K ∩ I). Hence,∫

K
fK =

∫
K∩I

fK∩I =
∫

I
fI ⇒ the definition (of integrability of f) only depends on f and A (and it

is independent of the choice of K ⊇ A).
Basic properties of integrable functions on general sets:
(1). Let f and g be integrable functions defined on a bounded set A ⊂ Rn and let α, β ∈ R. Then
the function αf + βg is integrable on A and

∫
A
(αf + βg) = α

∫
A

f + β
∫

A
g.

Proof. For any partition P of a cell K ⊇ A, since SP (αfK + βgK , K) = αSP (fK , K) + βSP (gK , K)
when the same intermediate points xj are used, the function αf + βg is integrable on A. Thus, by
choosing the intermediate points from A whenever it is possible, we obtain that SP (αf + βg, A) =
αSP (f,A) + βSP (g, A) which implies that

∫
A
(αf + βg) = α

∫
A

f + β
∫

A
g.

(2) Let A1 and A2 be bounded sets with no pints in common, and let f be a bounded function. If f
is integrable on A1 and on A2, then f is integrable on A1 ∪ A2 and

∫
A1∪A2

f =
∫

A1
f +

∫
A2

f.
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Proof. Let K be a closed cell containing both A1 and A2, and let fK(x) =

{
f(x) if x ∈ A1 ∪ A2,

0 if x ∈ K \ (A1 ∪ A2)

and f i
K(x) =

{
f(x) if x ∈ Ai,

0 if x ∈ K \ Ai

for i = 1, 2. Since f is integrable on Ai, i = 1, 2, f i
K is integrable

on K and, since fK = f 1
K + f 2

K , and f is integrable on A1 ∪A2. Also, for any partition P of K, note
that SP (fK , K) = SP (f 1

K , K) + SP (f 2
K , K) when the same intermediate points xj are used. Thus, we

have
∫

A1∪A2
f =

∫
A1

f +
∫

A2
f.

(3) If f : A → R is integrable on (bounded set) A and f(x) ≥ 0 for x ∈ A, then
∫

A
f ≥ 0.

Proof. For any closed cell K ⊇ A and any partition P of K, note that SP (fK , K) ≥ 0 for any
Riemann sum. Thus,

∫
A

f ≥ 0.
Remark. This implies that if f and g are integrable on A and f(x) ≤ g(x) for x ∈ A, then (a)∫

A
f ≤ ∫

A
g, and (b) |f | is integable on A, and | ∫

A
f | ≤ ∫

A
|f |.

(4) Let f : A → R be a bounded function and suppose that A has content zero. Then f is integrable
on A and

∫
A

f = 0.
Proof. LetK ⊇ A be a closed cell. If ε > 0 is given, let Pε be a partition of K such that those cells
in Pε which contain points of A have total content less than ε. Now if P is a refinement of Pε, then
those cells in P containing points of A will also have total content less than ε. Hence if |f(x)| ≤ M for
x ∈ A, we have |SP (fK , K)− 0| ≤ Mε for any Riemann sum corresponding to P. Since ε is arbitrary,
this implies that

∫
A

f = 0.
(5) Let f, g : A → R be bounded functions and suppose that f is integrable on (bounded set) A. Let
Z ⊆ A have content zero and suppose that f(x) = g(x) for all x ∈ A \ Z. Then g is integrable on A
and

∫
A

f =
∫

A
g.

Proof. Extend f and g to functions fK , gK defined on a closed cell K ⊇ A. Thus, the function
hK = fK − gK is bounded and equals 0 except on Z. Hence, hK is integrable on K and

∫
K

hK = 0.
Since fK is also integrable on K, we have

∫
A

f =
∫

K
fK =

∫
K

(fK − hK) =
∫

K
gK =

∫
A

g.
(6) Let U be a connected, open subset of Rn and let f : U ⊂ Rn → Rn+1 be a C1 map on U. If K is
any convex, compact subset of U, then f(K) has measure (or content) zero.
Definition. Let A ⊂ Rn be a bounded set. The characteristic function of A is the function χA

defined by χA(x) =

{
1 if x ∈ A,

0 otherwise.
Now, suppose A is a bounded subset of Rn and f is a bounded

function on Rn. Let K be a closed cell that contains A. We say that f is integrable on A if fχA

is integrable on K, and define
∫

A
f =

∫
K

fχA. (Note that fχA = 0 on K \A, so it is independent of
the choice of K ⊇ A.)
Question: Let f ≡ 1 on A ⊂ Rn. What does it mean when we say that f is integrable on A?
Definition. A set A ⊂ Rn is said to have content (or it is said to be (Jordan) measurable)
if it is bounded and its boundary ∂A has content zero. Let D(Rn) (= {A ⊂ Rn | A has content } =
{A ⊂ Rn | A is measurable }) denote the set of all measurable subsets of Rn.
Remark. If A ∈ D(Rn) and if K is a closed cell containing A, then the function gK defined

by gK(x) =

{
1 if x ∈ A

0 if x ∈ K \ A
is continuous on K except possibly at points of ∂A (which has

content zero). Thus, gK is integrable on K and we define the content of A, denoted c(A), by
c(A) =

∫
K

gK =
∫

A
1.

Remark. ∀ ε > 0, since c(A) =
∫

K
gK , ∃ a partition Pε = {Ij}m

j=1 of K such that |SPε(gk, K)−c(A)| <
ε for any Riemann sum SPε(gk, K). By choosing the intermediate points in SPε(gk, K) to belong to
A whenever possible, we have

∑m
j=1 c(Ij) + ε ≥ SPε(gk, K) + ε > c(A) > SPε(gk, K) − ε, where the

first inequality holds since A ⊂ ∪m
j=1Ij.

Thus, we have: A set A ⊂ Rn has content zero if and only if A has content and
∫

A
1 =

c(A) = 0.
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Proof. (⇒) ∀ ε > 0, since A has content zero, ∃ closed cells I1, . . . , Im s.t.

{
A ⊂ ∪m

j=1Ij = Kε∑m
j=1 c(Ij) < ε.

Since (i) Kε is bounded ⇒ A is bounded, and (ii) Kε is closed ⇒ ∂A ⊂ Kε = ∪m
j=1Ij with∑m

j=1 c(Ij) < ε ⇒ c(∂A) = 0

⇒ A has content and c(A) =
∫

A
1 =

∫
K

gK = 0 since 0 ≤ c(A) < SPε(gK , K)+ε ≤ ∑m
j=1 c(Ij)+ε ≤ 2ε

and ε is arbitrary.
(⇐) Suppose that A ⊂ Rn has content and that c(A) = 0 ⇒ ∃ a closed cell K containing A s.t.

the function gK(x) =

{
1 if x ∈ A

0 if x ∈ K \ A
is integrable on K. ∀ ε > 0, let Pε = {Ij}m

j=1 be a partition

of K s.t. any Riemann sum corresponding to Pε satisfies that 0 ≤ |SPε(gK , K) − c(A)| < ε. Since
c(A) = 0, we have 0 ≤ SPε(gK , K) < ε. By taking the intermediate points in SPε(gK , K) to belong to

A whenever possible, we have A ⊂
⋃

1≤j≤m; Ij∩A6=∅
Ij and

∑

1≤j≤m; Ij∩A6=∅
c(Ij) < ε ⇒ c(A) = 0.

Theorem. Let A ∈ D(Rn) and let f : A → R be integrable on A and such that |f(x)| ≤ M for all
x ∈ A. Then | ∫

A
f | ≤ Mc(A). More generally, if f is real valued and m ≤ f(x) ≤ M for all x ∈ A,

then (∗) mc(A) ≤ ∫
A

f ≤ Mc(A).
Proof. Let fK be the extension of f to a closed cell K containing A. If ε > 0 is given, then there
exists a partition Pε = {Ij}h

j=1 of K such that if SPε(fK , K) is any corresponding Riemann sum, then
SPε(fK , K) − ε ≤ ∫

K
fK ≤ SPε(fK , K) + ε. We note that if the intermediate points of the Riemann

sum are chosen outside of A whenever possible, we have SPε(fK , K) =
∑′ f(xj)c(Ij), where the sum

is extended over those cells in Pε entirely contained in A. Hence, SPε(fK , K) ≤ M
∑′ c(Ij) ≤ Mc(A).

Therefore, we have
∫

A
f =

∫
K

fK ≤ Mc(A) + ε, and since ε > 0 is arbitrary we obtain the right side
of inequality (∗). The left side is established in a similar manner.
Theorem. If A ∈ D(Rn) and c(A) > 0, then there exists a closed cell J ⊆ A such that c(J) 6= 0.
Mean Value Theorem. Let A ∈ D(Rn) be a connected set and let f : A → R be bounded and
continuous on A. Then there exists a point p ∈ A such that

∫
A

f = f(p)c(A).
Proof. If c(A) = 0, the conclusion is trivial; hence we suppose that c(A) 6= 0. Let m = inf{f(x) : x ∈
A}, and M = sup{f(x) : x ∈ A}; it follows from the preceding theorem that m ≤ 1

c(A)

∫
A

f ≤ M. If

both inequalities are strict, the results follows from Intermediate Value Theorem (since f is continu-
ous on A). Now suppose that

∫
A

f = Mc(A). If the supremum M is attained at p ∈ A, the conclusion
also follows. Hence we assume that the supremum M is not attained on A. Since c(A) 6= 0, there
exists a closed cell J ⊆ A such that c(J) 6= 0 (prove this). Since J is compact and f is contin-
uous on J, there exists ε > 0 such that f(x) ≤ M − ε for all x ∈ J. Since A = J ∪ (A \ J) we
have Mc(A) =

∫
A

f =
∫

J
f +

∫
A\J f ≤ (M − ε)c(J) + Mc(A \ J) < Mc(A), a contradiction. If∫

A
f = mc(A), then a similar argument applies.

Mean Value Theorem for Riemann-Stieltjes Integrals. Let A ∈ D(Rn) be a connected set,
let f : A → R be bounded and continuous on A, and let g : A → R be bounded, nonnegative and
continuous on A, Then there exists a point p ∈ A such that

∫
A

fg = f(p)
∫

A
g.

Remark (Well-definedness of (Jordan) measurability) . Note that the definition for a set
having content (or the definition of a set being measurable) is well defined since the the following
properties hold.
Proposition. Let A, B ∈ D(Rn) and let x ∈ Rn. Then
(1) A∩B, A∪B ∈ D(Rn) and c(A) + C(B) = c(A∩B) + c(A∪B). Using induction, this concludes

that if A ∈ D(Rn) and A is a finite disjoint union of measurable subsets, i.e. A =
l⋃

i=1

Bi and each

Bi ∈ D(Rn), then c(A) =
l∑

i=1

c(Bi).

(2) A \B, B \ A ∈ D(Rn), and c(A ∪B) = c(A \B) + c(A ∩B) + c(B \ A).
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(3) If x+A = {x+a | a ∈ A} then x+A ∈ D(Rn) and c(x+A) = c(A), i.e. the definition of content
is invariant under translations.
Proof. By using the definition of boundary points of a set, we have ∂(A ∩ B), ∂(A ∪ B), ∂(A \
B), ∂(B \ A) ⊂ ∂A ∪ ∂B. Thus, c(∂(A ∩ B)) = c(∂(A ∪ B)) = c(∂(A \ B)) = c(∂(B \ A)) = 0 and
A ∩B, A ∪B, A \B, B \ A ∈ D(Rn).
Now let K ⊇ A ∪ B be a closed cell and let fA, fB, fA∩B, fA∪B be the functions equal to 1 on
A,B, A ∩ B,A ∪ B, respectively, and equal 0 elsewhere on K. Then they are integrable on K and ,
since fA + fB = fA∩B + fA∪B, we have

c(A) + c(B) =

∫

K

fA +

∫

K

fB =

∫

K

(fA + fB) =

∫

K

(fA∩B + fA∪B) =

∫

K

fA∩B +

∫

K

fA∪B

= c(A ∩B) + c(A ∪B).

To prove (3), note that if ε > 0 is given and if J1, . . . , Jm are cells with ∂A ⊂
m⋃

i=1

Ji and
m∑

i=1

c(Ji) < ε,

then x + J1, . . . , x + Jm are cells with ∂(x + A) ⊂
m⋃

i=1

(x + Ji) and
m∑

i=1

c(x + Ji) < ε. Since ε > 0 is

arbitrary, the set x + A belongs to D(Rn).
Let I be a closed cell containing A; hence x + I is a closed cell containing x + A. Let f1 : I → R
be such that f1(y) = 1 for y ∈ A and f1(y) = 0 for y ∈ I \ A, and let f2 : x + I → R be such that
f2(y) = 1for y ∈ x + A and f1(y) = 0 for y ∈ x + I \ (x + A). Thus, we have f1(y) = f2(x + y) for
each y ∈ A, and c(A) =

∫
I
f1 =

∫
x+I

f2 = c(x + A).
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